Stuart G Tangye

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4962318/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Vaccine breakthrough hypoxemic COVID-19 pneumonia in patients with auto-Abs neutralizing type I IFNs. Science Immunology, 2023, 8, .	5.6	35
2	Hyper-IgE Syndrome due to an Elusive Novel Intronic Homozygous Variant in DOCK8. Journal of Clinical Immunology, 2022, 42, 119-129.	2.0	4
3	Human genetic and immunological determinants of critical COVID-19 pneumonia. Nature, 2022, 603, 587-598.	13.7	216
4	Atypical Autosomal Recessive AID Deficiency—Yet Another Piece of the Hyper-IgM Puzzle. Journal of Clinical Immunology, 2022, , 1.	2.0	0
5	Getting to the (germinal) center of humoral immune responses to SARS-CoV-2. Cell, 2022, 185, 945-948.	13.5	7
6	"Are you gonna go my way?â€â€"Decisions at the Tfh-B cell interface. Immunity, 2022, 55, 377-379.	6.6	1
7	Identification of germline monoallelic mutations in <i>IKZF2</i> in patients with immune dysregulation. Blood Advances, 2022, 6, 2444-2451.	2.5	18
8	Severe COVIDâ€19 represents an undiagnosed primary immunodeficiency in a high proportion of infected individuals. Clinical and Translational Immunology, 2022, 11, e1365.	1.7	7
9	A loss-of-function <i>IFNAR1</i> allele in Polynesia underlies severe viral diseases in homozygotes. Journal of Experimental Medicine, 2022, 219, .	4.2	28
10	STAT5B restrains human B-cell differentiation to maintain humoral immune homeostasis. Journal of Allergy and Clinical Immunology, 2022, 150, 931-946.	1.5	19
11	A Novel Targeted Amplicon Next-Generation Sequencing Gene Panel for the Diagnosis of Common Variable Immunodeficiency Has a High DiagnosticÂYield. Journal of Molecular Diagnostics, 2022, 24, 586-599.	1.2	4
12	The risk of COVID-19 death is much greater and age dependent with type I IFN autoantibodies. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2200413119.	3.3	110
13	Human Inborn Errors of Immunity: 2022 Update on the Classification from the International Union of Immunological Societies Expert Committee. Journal of Clinical Immunology, 2022, 42, 1473-1507.	2.0	389
14	Respiratory viral infections in otherwise healthy humans with inherited IRF7 deficiency. Journal of Experimental Medicine, 2022, 219, .	4.2	21
15	Recessive inborn errors of type I IFN immunity in children with COVID-19 pneumonia. Journal of Experimental Medicine, 2022, 219, .	4.2	59
16	Coronavirus disease 2019 in patients with inborn errors of immunity: An international study. Journal of Allergy and Clinical Immunology, 2021, 147, 520-531.	1.5	278
17	Molecular requirements for human lymphopoiesis as defined by inborn errors of immunity. Stem Cells, 2021, 39, 389-402.	1.4	4
18	Somatic reversion of pathogenic DOCK8 variants alters lymphocyte differentiation and function to effectively cure DOCK8 deficiency. Journal of Clinical Investigation, 2021, 131, .	3.9	18

#	Article	IF	CITATIONS
19	The Ever-Increasing Array of Novel Inborn Errors of Immunity: an Interim Update by the IUIS Committee. Journal of Clinical Immunology, 2021, 41, 666-679.	2.0	165
20	SARS-CoV-2–related MIS-C: A key to the viral and genetic causes of Kawasaki disease?. Journal of Experimental Medicine, 2021, 218, .	4.2	100
21	Genomic Spectrum and Phenotypic Heterogeneity of Human IL-21 Receptor Deficiency. Journal of Clinical Immunology, 2021, 41, 1272-1290.	2.0	25
22	CD8+ T cell landscape in Indigenous and non-Indigenous people restricted by influenza mortality-associated HLA-A*24:02 allomorph. Nature Communications, 2021, 12, 2931.	5.8	20
23	Hematopoietic Stem Cell Transplantation Cures Chronic Aichi Virus Infection in a Patient with X-linked Agammaglobulinemia. Journal of Clinical Immunology, 2021, 41, 1403-1405.	2.0	8
24	Human <i>STAT3</i> variants underlie autosomal dominant hyper-IgE syndrome by negative dominance. Journal of Experimental Medicine, 2021, 218, .	4.2	30
25	High Th2 cytokine levels and upper airway inflammation in human inherited T-bet deficiency. Journal of Experimental Medicine, 2021, 218, .	4.2	25
26	Phosphatidylinositol 3-kinase signaling and immune regulation: insights into disease pathogenesis and clinical implications. Expert Review of Clinical Immunology, 2021, 17, 905-914.	1.3	4
27	Inherited PD-1 deficiency underlies tuberculosis and autoimmunity in a child. Nature Medicine, 2021, 27, 1646-1654.	15.2	65
28	Humans with inherited TÂcell CD28 deficiency are susceptible to skin papillomaviruses but are otherwise healthy. Cell, 2021, 184, 3812-3828.e30.	13.5	53
29	Tissueâ€resident regulatory T cells accumulate at human barrier lymphoid organs. Immunology and Cell Biology, 2021, 99, 894-906.	1.0	6
30	CD4+ T cells that help B cells – a proposal for uniform nomenclature. Trends in Immunology, 2021, 42, 658-669.	2.9	65
31	Autoantibodies neutralizing type I IFNs are present in ~4% of uninfected individuals over 70 years old and account for ~20% of COVID-19 deaths. Science Immunology, 2021, 6, .	5.6	357
32	X-linked recessive TLR7 deficiency in ~1% of men under 60 years old with life-threatening COVID-19. Science Immunology, 2021, 6, .	5.6	267
33	Inherited human c-Rel deficiency disrupts myeloid and lymphoid immunity to multiple infectious agents. Journal of Clinical Investigation, 2021, 131, .	3.9	21
34	Mechanisms underlying host defense and disease pathology in response to severe acute respiratory syndrome (SARS)-CoV2 infection: insights from inborn errors of immunity. Current Opinion in Allergy and Clinical Immunology, 2021, 21, 515-524.	1.1	19
35	Coronavirus disease 2019 in patients with inborn errors of immunity: lessons learned. Current Opinion in Pediatrics, 2021, 33, 648-656.	1.0	42
36	Molecular regulation and dysregulation of T follicular helper cells – learning from inborn errors of immunity. Current Opinion in Immunology, 2021, 72, 249-261.	2.4	6

#	Article	IF	CITATIONS
37	<i>JEM</i> career launchpad. Journal of Experimental Medicine, 2021, 218, .	4.2	Ο
38	The expansion of human T-bet ^{high} CD21 ^{low} B cells is T cell dependent. Science Immunology, 2021, 6, eabh0891.	5.6	82
39	Intrinsic Defects in B Cell Development and Differentiation, T Cell Exhaustion and Altered Unconventional T Cell Generation Characterize Human Adenosine Deaminase Type 2 Deficiency. Journal of Clinical Immunology, 2021, 41, 1915-1935.	2.0	23
40	The Next Generation of Diagnostic Tests for Primary Immunodeficiency Disorders. Journal of Infectious Diseases, 2020, 221, 1232-1234.	1.9	3
41	Diversity of XMEN Disease: Description of 2 Novel Variants and Analysis of the Lymphocyte Phenotype. Journal of Clinical Immunology, 2020, 40, 299-309.	2.0	25
42	Unresponsiveness to inhaled antigen is governed by conventional dendritic cells and overridden during infection by monocytes. Science Immunology, 2020, 5, .	5.6	12
43	Activated PI3Kδ breaches multiple B cell tolerance checkpoints and causes autoantibody production. Journal of Experimental Medicine, 2020, 217, .	4.2	33
44	Regulation of the germinal center and humoral immunity by interleukin-21. Journal of Experimental Medicine, 2020, 217, .	4.2	74
45	Dominant-negative mutations in human <i>IL6ST</i> underlie hyper-IgE syndrome. Journal of Experimental Medicine, 2020, 217, .	4.2	64
46	Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science, 2020, 370, .	6.0	1,983
47	It's that time of year—APRIL promotes humoral immunity in humans. Journal of Allergy and Clinical Immunology, 2020, 146, 1013-1015.	1.5	2
48	Editorial: Human Disorders of PI3K Biology. Frontiers in Immunology, 2020, 11, 617464.	2.2	3
49	Human T-bet Governs Innate and Innate-like Adaptive IFN-Î ³ Immunity against Mycobacteria. Cell, 2020, 183, 1826-1847.e31.	13.5	83
50	A Global Effort to Define the Human Genetics of Protective Immunity to SARS-CoV-2 Infection. Cell, 2020, 181, 1194-1199.	13.5	185
51	Three Copies of Four Interferon Receptor Genes Underlie a Mild Type I Interferonopathy in Down Syndrome. Journal of Clinical Immunology, 2020, 40, 807-819.	2.0	44
52	The Clinical Immunogenomics Research Consortium Australasia (CIRCA): a Distributed Network Model for Genomic Healthcare Delivery. Journal of Clinical Immunology, 2020, 40, 763-766.	2.0	5
53	Everolimus-Induced Remission of Classic Kaposi's Sarcoma Secondary to Cryptic Splicing Mediated CTLA4 Haploinsufficiency. Journal of Clinical Immunology, 2020, 40, 774-779.	2.0	5
54	Genetic susceptibility to EBV infection: insights from inborn errors of immunity. Human Genetics, 2020, 139, 885-901.	1.8	38

#	Article	IF	CITATIONS
55	Extended clinical and immunological phenotype and transplant outcome in CD27 and CD70 deficiency. Blood, 2020, 136, 2638-2655.	0.6	64
56	Human Inborn Errors of Immunity: 2019 Update on the Classification from the International Union of Immunological Societies Expert Committee. Journal of Clinical Immunology, 2020, 40, 24-64.	2.0	881
57	Systemic Inflammation and Myelofibrosis in a Patient with Takenouchi-Kosaki Syndrome due to CDC42 Tyr64Cys Mutation. Journal of Clinical Immunology, 2020, 40, 567-570.	2.0	29
58	Primary immunodeficiencies reveal the molecular requirements for effective host defense against EBV infection. Blood, 2020, 135, 644-655.	0.6	80
59	Human Inborn Errors of Immunity: 2019 Update of the IUIS Phenotypical Classification. Journal of Clinical Immunology, 2020, 40, 66-81.	2.0	525
60	Human inborn errors of immunity to herpes viruses. Current Opinion in Immunology, 2020, 62, 106-122.	2.4	60
61	Refractory very early-onset inflammatory bowel disease associated with cytosolic isoleucyl-tRNA synthetase deficiency: A case report. World Journal of Gastroenterology, 2020, 26, 1841-1846.	1.4	6
62	Activating PIK3CD mutations impair human cytotoxic lymphocyte differentiation and function and EBV immunity. Journal of Allergy and Clinical Immunology, 2019, 143, 276-291.e6.	1.5	64
63	A deep intronic splice mutation of <i>STAT3</i> underlies hyper IgE syndrome by negative dominance. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16463-16472.	3.3	17
64	Flow Cytometric-Based Analysis of Defects in Lymphocyte Differentiation and Function Due to Inborn Errors of Immunity. Frontiers in Immunology, 2019, 10, 2108.	2.2	24
65	An essential role for the Zn2+ transporter ZIP7 in B cell development. Nature Immunology, 2019, 20, 350-361.	7.0	92
66	The FOXP3Δ2 isoform supports Treg cell development and protects against severe IPEX syndrome. Journal of Allergy and Clinical Immunology, 2019, 144, 317-320.e8.	1.5	20
67	B cell–intrinsic requirement for STK4 in humoral immunity in mice and human subjects. Journal of Allergy and Clinical Immunology, 2019, 143, 2302-2305.	1.5	21
68	Human DOCK2 Deficiency: Report of a Novel Mutation and Evidence for Neutrophil Dysfunction. Journal of Clinical Immunology, 2019, 39, 298-308.	2.0	31
69	Activating mutations in PIK3CD disrupt the differentiation and function of human and murine CD4+ T cells. Journal of Allergy and Clinical Immunology, 2019, 144, 236-253.	1.5	44
70	Immune Dysregulation and Disease Pathogenesis due to Activating Mutations in PIK3CD—the Goldilocks' Effect. Journal of Clinical Immunology, 2019, 39, 148-158.	2.0	26
71	Case Presentation of Hyper-IgE Syndrome With Novel Mutation. Pathology, 2019, 51, S50.	0.3	0
72	Human CD8+ T cell cross-reactivity across influenza A, B and C viruses. Nature Immunology, 2019, 20, 613-625.	7.0	180

#	Article	IF	CITATIONS
73	Human inborn errors of the actin cytoskeleton affecting immunity: way beyond WAS and WIP. Immunology and Cell Biology, 2019, 97, 389-402.	1.0	39
74	Chronic mucocutaneous candidiasis and connective tissue disorder in humans with impaired JNK1-dependent responses to IL-17A/F and TGF-β. Science Immunology, 2019, 4, .	5.6	45
75	Denisovan, modern human and mouse TNFAIP3 alleles tune A20 phosphorylation and immunity. Nature Immunology, 2019, 20, 1299-1310.	7.0	53
76	What can primary immunodeficiencies teach us about Th9 cell differentiation and function?. Immunology and Cell Biology, 2019, 97, 380-388.	1.0	4
77	Hematopoietic stem cell transplant effectively rescues lymphocyte differentiation and function in DOCK8-deficient patients. JCI Insight, 2019, 4, .	2.3	23
78	STAT3 regulates cytotoxicity of human CD57+ CD4+ T cells in blood and lymphoid follicles. Scientific Reports, 2018, 8, 3529.	1.6	29
79	Combined Immunodeficiency with Ring Chromosome 21. Journal of Clinical Immunology, 2018, 38, 251-256.	2.0	2
80	Circulating T _{FH} cells, serological memory, and tissue compartmentalization shape human influenza-specific B cell immunity. Science Translational Medicine, 2018, 10, .	5.8	196
81	Reversible Suppression of Lymphoproliferation and Thrombocytopenia with Rapamycin in a Patient with Common Variable Immunodeficiency. Journal of Clinical Immunology, 2018, 38, 159-162.	2.0	3
82	Human plasma C3 is essential for the development of memory B, but not T, lymphocytes. Journal of Allergy and Clinical Immunology, 2018, 141, 1151-1154.e14.	1.5	26
83	Is it dead or alive? TLR8 can tell. Nature Immunology, 2018, 19, 324-326.	7.0	2
84	International Union of Immunological Societies: 2017 Primary Immunodeficiency Diseases Committee Report on Inborn Errors of Immunity. Journal of Clinical Immunology, 2018, 38, 96-128.	2.0	732
85	The 2017 IUIS Phenotypic Classification for Primary Immunodeficiencies. Journal of Clinical Immunology, 2018, 38, 129-143.	2.0	488
86	Human IFN- \hat{I}^3 immunity to mycobacteria is governed by both IL-12 and IL-23. Science Immunology, 2018, 3, .	5.6	152
87	Tuberculosis and impaired IL-23–dependent IFN-γ immunity in humans homozygous for a common <i>TYK2</i> missense variant. Science Immunology, 2018, 3, .	5.6	148
88	Chronic Aichi Virus Infection in a Patient with X-Linked Agammaglobulinemia. Journal of Clinical Immunology, 2018, 38, 748-752.	2.0	18
89	IRF4 haploinsufficiency in a family with Whippleâ \in Ms disease. ELife, 2018, 7, .	2.8	43
90	B cells race the clock to get a second wind. Nature Immunology, 2018, 19, 791-793.	7.0	2

6

#	Article	IF	CITATIONS
91	Germline-activating mutations in <i>PIK3CD</i> compromise B cell development and function. Journal of Experimental Medicine, 2018, 215, 2073-2095.	4.2	79
92	Mutations affecting the actin regulator WD repeat–containing protein 1 lead to aberrant lymphoid immunity. Journal of Allergy and Clinical Immunology, 2018, 142, 1589-1604.e11.	1.5	64
93	Disruption of an antimycobacterial circuit between dendritic and helper T cells in human SPPL2a deficiency. Nature Immunology, 2018, 19, 973-985.	7.0	96
94	Memory B cells are reactivated in subcapsular proliferative foci of lymph nodes. Nature Communications, 2018, 9, 3372.	5.8	88
95	A recessive form of hyper-IgE syndrome by disruption of ZNF341-dependent STAT3 transcription and activity. Science Immunology, 2018, 3, .	5.6	132
96	Human immunity against EBV—lessons from the clinic. Journal of Experimental Medicine, 2017, 214, 269-283.	4.2	132
97	Pathogenic CD4 ⁺ T cells regulating Bâ€cell differentiation in autoimmunity: not exactly Tfh cells. Immunology and Cell Biology, 2017, 95, 419-421.	1.0	3
98	The TORC that Gets the GC Cycling. Immunity, 2017, 46, 974-976.	6.6	1
99	Memory B cells: total recall. Current Opinion in Immunology, 2017, 45, 132-140.	2.4	57
100	Combined immunodeficiency and Epstein-Barr virus–induced B cell malignancy in humans with inherited CD70 deficiency. Journal of Experimental Medicine, 2017, 214, 91-106.	4.2	134
101	Arginine methylation catalyzed by PRMT1 is required for B cell activation and differentiation. Nature Communications, 2017, 8, 891.	5.8	34
102	Cytokine-Mediated Regulation of Human Lymphocyte Development and Function: Insights from Primary Immunodeficiencies. Journal of Immunology, 2017, 199, 1949-1958.	0.4	23
103	DOCK8 Drives Src-Dependent NK Cell Effector Function. Journal of Immunology, 2017, 199, 2118-2127.	0.4	18
104	Defective protein prenylation is a diagnostic biomarker of mevalonate kinase deficiency. Journal of Allergy and Clinical Immunology, 2017, 140, 873-875.e6.	1.5	29
105	Low IgE Is Insufficiently Sensitive to Guide Genetic Testing of STAT3 Gain-of-Function Mutations. Clinical Chemistry, 2017, 63, 1539-1540.	1.5	4
106	AD Hyper-IgE Syndrome Due to a Novel Loss-of-Function Mutation in STAT3: a Diagnostic Pursuit Won by Clinical Acuity. Journal of Clinical Immunology, 2017, 37, 12-17.	2.0	5
107	Dedicator of cytokinesis 8–deficient CD4 + TÂcells are biased to a T H 2 effector fate at the expense of T H 1 and T H 17Âcells. Journal of Allergy and Clinical Immunology, 2017, 139, 933-949.	1.5	69
108	CCR6 Defines Memory B Cell Precursors in Mouse and Human Germinal Centers, Revealing Light-Zone Location and Predominant Low Antigen Affinity. Immunity, 2017, 47, 1142-1153.e4.	6.6	196

#	Article	IF	CITATIONS
109	Inherited GINS1 deficiency underlies growth retardation along with neutropenia and NK cell deficiency. Journal of Clinical Investigation, 2017, 127, 1991-2006.	3.9	115
110	Unique and shared signaling pathways cooperate to regulate the differentiation of human CD4+ T cells into distinct effector subsets. Journal of Experimental Medicine, 2016, 213, 1589-1608.	4.2	77
111	Elucidating the effects of disease-causing mutations on STAT3 function in autosomal-dominant hyper-IgE syndrome. Journal of Allergy and Clinical Immunology, 2016, 138, 1210-1213.e5.	1.5	16
112	NaÃ ⁻ ve and memory B cells exhibit distinct biochemical responses following BCR engagement. Immunology and Cell Biology, 2016, 94, 774-786.	1.0	21
113	Mevalonate kinase deficiency leads to decreased prenylation of Rab GTPases. Immunology and Cell Biology, 2016, 94, 994-999.	1.0	36
114	Cytotoxic T cells that escape exhaustion. Nature, 2016, 537, 312-314.	13.7	6
115	IL-27 Directly Enhances Germinal Center B Cell Activity and Potentiates Lupus in <i>Sanroque</i> Mice. Journal of Immunology, 2016, 197, 3008-3017.	0.4	27
116	Dual T cell– and B cell–intrinsic deficiency in humans with biallelic <i>RLTPR</i> mutations. Journal of Experimental Medicine, 2016, 213, 2413-2435.	4.2	117
117	B-cell–specific STAT3 deficiency: Insight into the molecular basis ofÂautosomal-dominant hyper-IgE syndrome. Journal of Allergy and Clinical Immunology, 2016, 138, 1455-1458.e3.	1.5	28
118	The Integrin LFA-1 Controls T Follicular Helper Cell Generation and Maintenance. Immunity, 2016, 45, 831-846.	6.6	65
119	The Expanding Spectrum of NFkB1 Deficiency. Journal of Clinical Immunology, 2016, 36, 531-532.	2.0	5
120	Genetic cause of immune dysregulation — one gene or two?. Journal of Clinical Investigation, 2016, 126, 4065-4067.	3.9	5
121	Compartmentalization of Total and Virus-Specific Tissue-Resident Memory CD8+ T Cells in Human Lymphoid Organs. PLoS Pathogens, 2016, 12, e1005799.	2.1	74
122	Thucydides and longer-lived plasma cells. Blood, 2015, 125, 1684-1685.	0.6	1
123	Monogenic mutations differentially affect the quantity and quality of T follicular helper cells in patients with human primary immunodeficiencies. Journal of Allergy and Clinical Immunology, 2015, 136, 993-1006.e1.	1.5	181
124	Impairment of immunity to <i>Candida</i> and <i>Mycobacterium</i> in humans with bi-allelic <i>RORC</i> mutations. Science, 2015, 349, 606-613.	6.0	366
125	FAS Inactivation Releases Unconventional Germinal Center B Cells that Escape Antigen Control and Drive IgE and Autoantibody Production. Immunity, 2015, 42, 890-902.	6.6	77
126	STAT3 is a critical cell-intrinsic regulator of human unconventional T cell numbers and function. Journal of Experimental Medicine, 2015, 212, 855-864.	4.2	70

#	Article	IF	CITATIONS
127	Advances in IL-21 biology—enhancing our understanding of human disease. Current Opinion in Immunology, 2015, 34, 107-115.	2.4	62
128	T Follicular Helper Cells Have Distinct Modes of Migration and Molecular Signatures in Naive and Memory Immune Responses. Immunity, 2015, 42, 704-718.	6.6	159
129	SnapShot: Interactions between B Cells and T Cells. Cell, 2015, 162, 926-926.e1.	13.5	25
130	Cerebral Vasculitis in X-linked Lymphoproliferative Disease Cured by Matched Unrelated Cord Blood Transplant. Journal of Clinical Immunology, 2015, 35, 604-609.	2.0	17
131	Human TYK2 deficiency: Mycobacterial and viral infections without hyper-IgE syndrome. Journal of Experimental Medicine, 2015, 212, 1641-1662.	4.2	293
132	STAT3 interrupts ATR-Chk1 signaling to allow oncovirus-mediated cell proliferation. Proceedings of the United States of America, 2014, 111, 4946-4951.	3.3	72
133	Cytokine-Mediated Regulation of Plasma Cell Generation: IL-21 Takes Center Stage. Frontiers in Immunology, 2014, 5, 65.	2.2	186
134	Human T follicular helper cells in primary immunodeficiencies. Current Opinion in Pediatrics, 2014, 26, 720-726.	1.0	15
135	T cells require DOCK8 for flexibility and function. Journal of Experimental Medicine, 2014, 211, 2482-2483.	4.2	1
136	Dominant-activating germline mutations in the gene encoding the PI(3)K catalytic subunit p110δresult in T cell senescence and human immunodeficiency. Nature Immunology, 2014, 15, 88-97.	7.0	575
137	Cell membrane associated free kappa light chains are found on a subset of tonsil and in vitro-derived plasmablasts. Human Immunology, 2014, 75, 986-990.	1.2	7
138	Immune dysregulation in human subjects with heterozygous germline mutations in <i>CTLA4</i> . Science, 2014, 345, 1623-1627.	6.0	745
139	STAT3 is a central regulator of lymphocyte differentiation and function. Current Opinion in Immunology, 2014, 28, 49-57.	2.4	76
140	XLP: Clinical Features and Molecular Etiology due to Mutations in SH2D1A Encoding SAP. Journal of Clinical Immunology, 2014, 34, 772-779.	2.0	105
141	Signaling lymphocytic activation molecule (SLAM)/SLAM-associated protein pathway regulates human B-cell tolerance. Journal of Allergy and Clinical Immunology, 2014, 133, 1149-1161.	1.5	33
142	Editorial overview: Lymphocyte activation and effector functions. Current Opinion in Immunology, 2014, 28, v-vii.	2.4	0
143	The right "Job―for STAT3 mutant mice!. Blood, 2014, 123, 2907-2909.	0.6	1
144	Signal transducer and activator of transcription 3 (STAT3) mutations underlying autosomal dominant hyper-IgE syndrome impair human CD8+ T-cell memory formation and function. Journal of Allergy and Clinical Immunology, 2013, 132, 400-411.e9.	1.5	63

#	Article	IF	CITATIONS
145	IL-21 signalling via STAT3 primes human naÃ ⁻ ve B cells to respond to IL-2 to enhance their differentiation into plasmablasts. Blood, 2013, 122, 3940-3950.	0.6	121
146	Circulating Precursor CCR7loPD-1hi CXCR5+ CD4+ T Cells Indicate Tfh Cell Activity and Promote Antibody Responses upon Antigen Reexposure. Immunity, 2013, 39, 770-781.	6.6	571
147	The good, the bad and the ugly — TFH cells in human health and disease. Nature Reviews Immunology, 2013, 13, 412-426.	10.6	475
148	Transitional B cell subsets in human bone marrow. Clinical and Experimental Immunology, 2013, 174, 53-59.	1.1	29
149	Inherited human OX40 deficiency underlying classic Kaposi sarcoma of childhood. Journal of Experimental Medicine, 2013, 210, 1743-1759.	4.2	119
150	Signal Transducer and Activator of Transcription 3 Limits Epstein-Barr Virus Lytic Activation in B Lymphocytes. Journal of Virology, 2013, 87, 11438-11446.	1.5	42
151	Naive and memory human B cells have distinct requirements for STAT3 activation to differentiate into antibody-secreting plasma cells. Journal of Experimental Medicine, 2013, 210, 2739-2753.	4.2	158
152	To B1 or not to B1: that really is still the question!. Blood, 2013, 121, 5109-5110.	0.6	47
153	DOCK8 is critical for the survival and function of NKT cells. Blood, 2013, 122, 2052-2061.	0.6	68
154	A recurrent dominant negative E47 mutation causes agammaglobulinemia and BCRââ,¬â€œ B cells. Journal of Clinical Investigation, 2013, 123, 4781-4785.	3.9	94
155	Expansion of somatically reverted memory CD8+ T cells in patients with X-linked lymphoproliferative disease caused by selective pressure from Epstein-Barr virus. Journal of Experimental Medicine, 2012, 209, 913-924.	4.2	59
156	A new ICB sister journal focuses on clinical and translational immunology. Clinical and Translational Immunology, 2012, 1, e1.	1.7	1
157	Functional STAT3 deficiency compromises the generation of human T follicular helper cells. Blood, 2012, 119, 3997-4008.	0.6	267
158	Identification of Bcl-6-dependent follicular helper NKT cells that provide cognate help for B cell responses. Nature Immunology, 2012, 13, 35-43.	7.0	249
159	Clinical, molecular, and cellular immunologic findings in patients with SP110-associated veno-occlusive disease with immunodeficiency syndrome. Journal of Allergy and Clinical Immunology, 2012, 130, 735-742.e6.	1.5	49
160	A helping hand from neutrophils in T cell–independent antibody responses?. Nature Immunology, 2012, 13, 111-113.	7.0	4
161	The origins, function, and regulation of T follicular helper cells. Journal of Experimental Medicine, 2012, 209, 1241-1253.	4.2	478
162	T cell–B cell interactions in primary immunodeficiencies. Annals of the New York Academy of Sciences, 2012, 1250, 1-13.	1.8	25

#	Article	IF	CITATIONS
163	Human RHOH deficiency causes T cell defects and susceptibility to EV-HPV infections. Journal of Clinical Investigation, 2012, 122, 3239-3247.	3.9	134
164	Molecular Pathogenesis of EBV Susceptibility in XLP as Revealed by Analysis of Female Carriers with Heterozygous Expression of SAP. PLoS Biology, 2011, 9, e1001187.	2.6	100
165	SLAM Family Receptors and SAP Adaptors in Immunity. Annual Review of Immunology, 2011, 29, 665-705.	9.5	411
166	Staying alive: regulation of plasma cell survival. Trends in Immunology, 2011, 32, 595-602.	2.9	114
167	Calcineurin-dependent negative regulation of CD94/NKG2A expression on naive CD8+ T cells. Blood, 2011, 118, 116-128.	0.6	23
168	A Subset of Interleukin-21+ Chemokine Receptor CCR9+ T Helper Cells Target Accessory Organs of the Digestive System in Autoimmunity. Immunity, 2011, 34, 602-615.	6.6	104
169	Plasmacytoid DCs Induce Gutsy Plasma Cells. Immunity, 2011, 34, 144-146.	6.6	2
170	Regulation of T follicular helper cell formation and function by antigen presenting cells. Current Opinion in Immunology, 2011, 23, 111-118.	2.4	74
171	IL-21 is the primary common Î ³ chain-binding cytokine required for human B-cell differentiation in vivo. Blood, 2011, 118, 6824-6835.	0.6	132
172	DOCK8 deficiency impairs CD8 T cell survival and function in humans and mice. Journal of Experimental Medicine, 2011, 208, 2305-2320.	4.2	175
173	CXCR5 Expressing Human Central Memory CD4 T Cells and Their Relevance for Humoral Immune Responses. Journal of Immunology, 2011, 186, 5556-5568.	0.4	296
174	Differential expression of CD21 identifies developmentally and functionally distinct subsets of human transitional B cells. Blood, 2010, 115, 519-529.	0.6	110
175	Impaired Epstein-Barr virus–specific CD8+ T-cell function in X-linked lymphoproliferative disease is restricted to SLAM family–positive B-cell targets. Blood, 2010, 116, 3249-3257.	0.6	92
176	Expansion of circulating T cells resembling follicular helper T cells is a fixed phenotype that identifies a subset of severe systemic lupus erythematosus. Arthritis and Rheumatism, 2010, 62, 234-244.	6.7	593
177	Follicular Helper T Cell Differentiation Requires Continuous Antigen Presentation that Is Independent of Unique B Cell Signaling. Immunity, 2010, 33, 241-253.	6.6	299
178	Human Th9 cells: inflammatory cytokines modulate ILâ€9 production through the induction of ILâ€21. Immunology and Cell Biology, 2010, 88, 621-623.	1.0	24
179	Comprehensive analysis of the cytokine-rich chromosome 5q31.1 region suggests a role for IL-4 gene variants in prostate cancer risk. Carcinogenesis, 2010, 31, 1748-1754.	1.3	38
180	B cell–intrinsic signaling through IL-21 receptor and STAT3 is required for establishing long-lived antibody responses in humans. Journal of Experimental Medicine, 2010, 207, 155-171.	4.2	346

#	Article	IF	CITATIONS
181	IL-27 supports germinal center function by enhancing IL-21 production and the function of T follicular helper cells. Journal of Experimental Medicine, 2010, 207, 2895-2906.	4.2	185
182	Therapeutic implications of advances in our understanding of transitional B-cell development in humans. Expert Review of Clinical Immunology, 2010, 6, 765-775.	1.3	11
183	Insights into the Role of STAT3 in Human Lymphocyte Differentiation as Revealed by the Hyper-IgE Syndrome. Journal of Immunology, 2009, 182, 21-28.	0.4	53
184	Resting Human Memory B Cells Are Intrinsically Programmed for Enhanced Survival and Responsiveness to Diverse Stimuli Compared to Naive B Cells. Journal of Immunology, 2009, 182, 890-901.	0.4	231
185	Primary immune deficiencies affecting lymphocyte differentiation: lessons from the spectrum of resulting infections. International Immunology, 2009, 21, 1003-1011.	1.8	19
186	Memory B cells: Effectors of longâ€lived immune responses. European Journal of Immunology, 2009, 39, 2065-2075.	1.6	199
187	Invariant natural killer (iNK) T cell deficiency in patients with common variable immunodeficiency. Clinical and Experimental Immunology, 2009, 157, 365-369.	1.1	28
188	Early commitment of naÃ⁻ve human CD4 ⁺ T cells to the T follicular helper (T _{FH}) cell lineage is induced by ILâ€12. Immunology and Cell Biology, 2009, 87, 590-600.	1.0	310
189	Dock8 mutations cripple B cell immunological synapses, germinal centers and long-lived antibody production. Nature Immunology, 2009, 10, 1283-1291.	7.0	236
190	Helping the Helpers!. Immunity, 2009, 31, 12-14.	6.6	5
191	The Role of BAFF and APRIL in Regulating Human B-Cell Behaviour: Implications for Disease Pathogenesis. , 2009, , 195-220.		0
192	Helpful T cells are sticky. Nature, 2008, 455, 745-747.	13.7	2
193	T Follicular Helper (T _{FH}) Cells in Normal and Dysregulated Immune Responses. Annual Review of Immunology, 2008, 26, 741-766.	9.5	557
194	Deficiency of Th17 cells in hyper IgE syndrome due to mutations in <i>STAT3 </i> . Journal of Experimental Medicine, 2008, 205, 1551-1557.	4.2	610
195	IL-21-Induced Isotype Switching to IgG and IgA by Human Naive B Cells Is Differentially Regulated by IL-4. Journal of Immunology, 2008, 181, 1767-1779.	0.4	240
196	Functional Consequences of Interactions between Human NKR-P1A and Its Ligand LLT1 Expressed on Activated Dendritic Cells and B Cells. Journal of Immunology, 2008, 180, 6508-6517.	0.4	157
197	STAT3 is required for IL-21–induced secretion of IgE from human naive B cells. Blood, 2008, 112, 1784-1793.	0.6	117
198	Epstein-Barr virus persistence in the absence of conventional memory B cells: lgM+lgD+CD27+ B cells harbor the virus in X-linked lymphoproliferative disease patients. Blood, 2008, 112, 672-679.	0.6	36

#	Article	IF	CITATIONS
199	Decreased expression of Krüppel-like factors in memory B cells induces the rapid response typical of secondary antibody responses. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13420-13425.	3.3	114
200	Cytokine-Mediated Regulation of Human B Cell Differentiation into Ig-Secreting Cells: Predominant Role of IL-21 Produced by CXCR5+ T Follicular Helper Cells. Journal of Immunology, 2007, 179, 8180-8190.	0.4	459
201	Human IgM+CD27+ B Cells: Memory B Cells or "Memory―B Cells?. Journal of Immunology, 2007, 179, 13-19.	0.4	218
202	An important role for B-cell activation factor and B cells in the pathogenesis of Sjögren's syndrome. Current Opinion in Rheumatology, 2007, 19, 406-413.	2.0	51
203	Regulation of Cellular and Humoral Immune Responses by the SLAM and SAP Families of Molecules. Annual Review of Immunology, 2007, 25, 337-379.	9.5	229
204	Autoimmunity: ILâ€21: a new player in Th17â€cell differentiation. Immunology and Cell Biology, 2007, 85, 503-505.	1.0	72
205	Immune cell transcriptome datasets reveal novel leukocyte subset–specific genes and genes associated with allergic processes. Journal of Allergy and Clinical Immunology, 2006, 118, 496-503.	1.5	46
206	BAFF, APRIL and human B cell disorders. Seminars in Immunology, 2006, 18, 305-317.	2.7	180
207	Persistence of naive CD45RA+ regulatory T cells in adult life. Blood, 2006, 107, 2830-2838.	0.6	246
208	Missense mutations in SH2D1A identified in patients with X-linked lymphoproliferative disease differentially affect the expression and function of SAP. International Immunology, 2006, 18, 1055-1065.	1.8	15
209	Expansion of Functionally Immature Transitional B Cells Is Associated with Human-Immunodeficient States Characterized by Impaired Humoral Immunity. Journal of Immunology, 2006, 176, 1506-1516.	0.4	169
210	The X-linked lymphoproliferative disease gene product SAP associates with PAK-interacting exchange factor and participates in T cell activation. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 14447-14452.	3.3	46
211	Kinetics of Human B Cell Behavior and Amplification of Proliferative Responses following Stimulation with IL-21. Journal of Immunology, 2006, 177, 5236-5247.	0.4	250
212	Selective generation of functional somatically mutated IgM+CD27+, but not Ig isotype-switched, memory B cells in X-linked lymphoproliferative disease. Journal of Clinical Investigation, 2006, 116, 322-333.	3.9	122
213	B Cells and Autoimmunity. , 2006, , 139-156.		Ο
214	SAP controls the cytolytic activity of CD8+ T cells against EBV-infected cells. Blood, 2005, 105, 4383-4389.	0.6	167
215	Regulation of NKT cell development by SAP, the protein defective in XLP. Nature Medicine, 2005, 11, 340-345.	15.2	349
216	Follicular B helper T cells in antibody responses and autoimmunity. Nature Reviews Immunology, 2005, 5, 853-865.	10.6	541

13

#	Article	IF	CITATIONS
217	Molecular and cellular pathogenesis of X-linked lymphoproliferative disease. Immunological Reviews, 2005, 203, 180-199.	2.8	200
218	Contribution of stromal cells to the migration, function and retention of plasma cells in human spleen: potential roles of CXCL12, IL-6 and CD54. European Journal of Immunology, 2005, 35, 699-708.	1.6	63
219	Increased Expression of CD27 on Activated Human Memory B Cells Correlates with Their Commitment to the Plasma Cell Lineage. Journal of Immunology, 2005, 174, 4034-4042.	0.4	121
220	Impaired humoral immunity in X-linked lymphoproliferative disease is associated with defective IL-10 production by CD4+ T cells. Journal of Clinical Investigation, 2005, 115, 1049-1059.	3.9	139
221	Impaired humoral immunity in X-linked lymphoproliferative disease is associated with defective IL-10 production by CD4+ T cells. Journal of Clinical Investigation, 2005, 115, 1049-1059.	3.9	81
222	T Follicular Helper Cells Express a Distinctive Transcriptional Profile, Reflecting Their Role as Non-Th1/Th2 Effector Cells That Provide Help for B Cells. Journal of Immunology, 2004, 173, 68-78.	0.4	650
223	B Cell-Activating Factor Belonging to the TNF Family (BAFF)-R Is the Principal BAFF Receptor Facilitating BAFF Costimulation of Circulating T and B Cells. Journal of Immunology, 2004, 173, 807-817.	0.4	436
224	Divide and conquer: the importance of cell division in regulating B-cell responses. Immunology, 2004, 112, 509-520.	2.0	109
225	Evidence from the generation of immunoglobulin G–secreting cells that stochastic mechanisms regulate lymphocyte differentiation. Nature Immunology, 2004, 5, 55-63.	7.0	201
226	Automatic generation of lymphocyte heterogeneity: Divisionâ€dependent changes in the expression of CD27, CCR7 and CD45 by activated human naive CD4 + T cells are independently regulated. Immunology and Cell Biology, 2004, 82, 67-74.	1.0	24
227	The role of the BAFF/APRIL system in B cell homeostasis and lymphoid cancers. Current Opinion in Pharmacology, 2004, 4, 347-354.	1.7	113
228	Antigen-selected, immunoglobulin-secreting cells persist in human spleen and bone marrow. Blood, 2004, 103, 3805-3812.	0.6	123
229	BAFF selectively enhances the survival of plasmablasts generated from human memory B cells. Journal of Clinical Investigation, 2004, 113, 1069-1069.	3.9	0
230	Regulation of NKT Cell Development by Sap, the Adaptor Mutated in X-Linked Lymphoproliferative Disease Blood, 2004, 104, 317-317.	0.6	0
231	Intrinsic Differences in the Proliferation of Naive and Memory Human B Cells as a Mechanism for Enhanced Secondary Immune Responses. Journal of Immunology, 2003, 170, 686-694.	0.4	258
232	A Division-Linked Mechanism for the Rapid Generation of Ig-Secreting Cells from Human Memory B Cells. Journal of Immunology, 2003, 170, 261-269.	0.4	157
233	Functional Requirements for Interactions Between CD84 and Src Homology 2 Domain-Containing Proteins and Their Contribution to Human T Cell Activation. Journal of Immunology, 2003, 171, 2485-2495.	0.4	63
234	BAFF selectively enhances the survival of plasmablasts generated from human memory B cells. Journal of Clinical Investigation, 2003, 112, 286-297.	3.9	429

#	Article	IF	CITATIONS
235	Isotype Switching by Human B Cells Is Division-Associated and Regulated by Cytokines. Journal of Immunology, 2002, 169, 4298-4306.	0.4	181
236	CD84 is up-regulated on a major population of human memory B cells and recruits the SH2 domain containing proteins SAP and EAT-2. European Journal of Immunology, 2002, 32, 1640.	1.6	81
237	Reduced memory B-cell populations in boys with B-cell dysfunction after bone marrow transplantation for X-linked severe combined immunodeficiency. British Journal of Haematology, 2001, 112, 1004-1011.	1.2	10
238	IgM expressed by leukemic CD5+ B cells binds mouse immunoglobulin light chain. Journal of Molecular Recognition, 2001, 14, 245-253.	1.1	2
239	Protein Tyrosine Phosphatase CD148-Mediated Inhibition of T-Cell Receptor Signal Transduction Is Associated with Reduced LAT and Phospholipase Cl³1 Phosphorylation. Molecular and Cellular Biology, 2001, 21, 2393-2403.	1.1	75
240	Cutting Edge: Functional Requirement for SAP in 2B4-Mediated Activation of Human Natural Killer Cells as Revealed by the X-Linked Lymphoproliferative Syndrome. Journal of Immunology, 2000, 165, 2932-2936.	0.4	245
241	The CD2-subset of the Ig superfamily of cell surface molecules: receptor–ligand pairs expressed by NK cells and other immune cells. Seminars in Immunology, 2000, 12, 149-157.	2.7	129
242	2B4-mediated activation of human natural killer cells. Molecular Immunology, 2000, 37, 493-501.	1.0	97
243	Identification of Functional Human Splenic Memory B Cells by Expression of CD148 and CD27. Journal of Experimental Medicine, 1998, 188, 1691-1703.	4.2	409
244	Interleukin-10 Inhibits theIn vitroProliferation of Human Activated Leukemic CD5+B-Cells. Leukemia and Lymphoma, 1998, 31, 121-130.	0.6	18
245	Human cytokines suppress apoptosis of leukaemic CD5+B cells and preserve expression of bcl-2. Immunology and Cell Biology, 1997, 75, 127-135.	1.0	51
246	Cytokines and cross-linking of slgM augment PMA-induced activation of human leukaemic CD5+B cells. Immunology and Cell Biology, 1997, 75, 561-567.	1.0	6
247	Leukaemic CD5 + Bâ€cell apoptosis: coâ€incidence of cell death and DNA fragmentation with reduced bclâ€2 expression. British Journal of Haematology, 1996, 92, 950-953.	1.2	14
248	Phorbol ester activates CD5 ⁺ leukaemic B cells via a T cellâ€independent mechanism. Immunology and Cell Biology, 1995, 73, 44-51.	1.0	9