Panayotis Lavvas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4962242/publications.pdf

Version: 2024-02-01

79 papers 4,267 citations

36 h-index 64 g-index

81 all docs

81 docs citations

81 times ranked 2879 citing authors

#	Article	IF	CITATIONS
1	Negative ion chemistry in Titan's upper atmosphere. Planetary and Space Science, 2009, 57, 1558-1572.	1.7	240
2	The atmosphere of Pluto as observed by New Horizons. Science, 2016, 351, aad8866.	12.6	201
3	The escape of heavy atoms from the ionosphere of HD209458b. I. A photochemical–dynamical model of the thermosphere. Icarus, 2013, 226, 1678-1694.	2.5	196
4	An ultrahot gas-giant exoplanet with a stratosphere. Nature, 2017, 548, 58-61.	27.8	192
5	Titan trace gaseous composition from CIRS at the end of the Cassini–Huygens prime mission. Icarus, 2010, 207, 461-476.	2.5	161
6	AN ESTIMATE OF THE CHEMICAL COMPOSITION OF TITAN's LAKES. Astrophysical Journal, 2009, 707, L128-L131.	4.5	131
7	<i>Hubble</i> PanCET: an extended upper atmosphere of neutral hydrogen around the warm Neptune GJ 3470b. Astronomy and Astrophysics, 2018, 620, A147.	5.1	128
8	Aerosol growth in Titan's ionosphere. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2729-2734.	7.1	126
9	Simulating the density of organic species in the atmosphere of Titan with a coupled ion-neutral photochemical model. Icarus, 2019, 324, 120-197.	2.5	125
10	The mesosphere and lower thermosphere of Titan revealed by Cassini/UVIS stellar occultations. Icarus, 2011, 216, 507-534.	2.5	124
11	Energy deposition and primary chemical products in Titan's upper atmosphere. Icarus, 2011, 213, 233-251.	2.5	121
12	CRITICAL REVIEW OF N, N ⁺ , N ⁺ ₂ , N ⁺⁺ , And N ⁺⁺ ₂ MAIN PRODUCTION PROCESSES AND REACTIONS OF RELEVANCE TO TITAN'S ATMOSPHERE. Astrophysical Journal, Supplement Series, 2013, 204, 20.	7.7	118
13	The Hubble Space Telescope PanCET Program: Exospheric Mg ii and Fe ii in the Near-ultraviolet Transmission Spectrum of WASP-121b Using Jitter Decorrelation. Astronomical Journal, 2019, 158, 91.	4.7	112
14	An Optical Transmission Spectrum for the Ultra-hot Jupiter WASP-121b Measured with the Hubble Space Telescope. Astronomical Journal, 2018, 156, 283.	4.7	106
15	CHARACTERIZING THE THERMOSPHERE OF HD209458b WITH UV TRANSIT OBSERVATIONS. Astrophysical Journal, 2010, 723, 116-128.	4.5	94
16	Structure and composition of Pluto's atmosphere from the New Horizons solar ultraviolet occultation. Icarus, 2018, 300, 174-199.	2.5	90
17	Detection of CO and HCN in Pluto's atmosphere with ALMA. Icarus, 2017, 286, 289-307.	2.5	89
18	The escape of heavy atoms from the ionosphere of HD209458b. II. Interpretation of the observations. Icarus, 2013, 226, 1695-1708.	2.5	87

#	Article	IF	Citations
19	SURFACE CHEMISTRY AND PARTICLE SHAPE: PROCESSES FOR THE EVOLUTION OF AEROSOLS IN TITAN'S ATMOSPHERE. Astrophysical Journal, 2011, 728, 80.	4.5	84
20	Titan's vertical aerosol structure at the Huygens landing site: Constraints on particle size, density, charge, and refractive index. Icarus, 2010, 210, 832-842.	2.5	78
21	TandEM: Titan and Enceladus mission. Experimental Astronomy, 2009, 23, 893-946.	3.7	77
22	The detached haze layer in Titan's mesosphere. Icarus, 2009, 201, 626-633.	2.5	72
23	Haze in Pluto's atmosphere. Icarus, 2017, 290, 112-133.	2.5	72
24	Aerosol Properties of the Atmospheres of Extrasolar Giant Planets. Astrophysical Journal, 2017, 847, 32.	4.5	69
25	Formation of NH3 and CH2NH in Titan's upper atmosphere. Faraday Discussions, 2010, 147, 31.	3.2	66
26	Condensation in Titan's atmosphere at the Huygens landing site. Icarus, 2011, 215, 732-750.	2.5	58
27	ELECTRON DENSITIES AND ALKALI ATOMS IN EXOPLANET ATMOSPHERES. Astrophysical Journal, 2014, 796, 15.	4.5	56
28	HST PanCET Program: A Cloudy Atmosphere for the Promising JWST Target WASP-101b. Astrophysical Journal Letters, 2017, 835, L12.	8.3	56
29	Hubble PanCET: an isothermal day-side atmosphere for the bloated gas-giant HAT-P-32Ab. Monthly Notices of the Royal Astronomical Society, 2018, 474, 1705-1717.	4.4	55
30	RAPID ASSOCIATION REACTIONS AT LOW PRESSURE: IMPACT ON THE FORMATION OF HYDROCARBONS ON TITAN. Astrophysical Journal, 2012, 744, 11.	4.5	54
31	Composition and chemistry of Titan's thermosphere and ionosphere. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367, 729-741.	3.4	51
32	The evolution of Titan's detached haze layer near equinox in 2009. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	47
33	Titan's lakes chemical composition: Sources of uncertainties and variability. Planetary and Space Science, 2012, 61, 99-107.	1.7	47
34	EVOLUTION OF THE STRATOSPHERIC TEMPERATURE AND CHEMICAL COMPOSITION OVER ONE TITANIAN YEAR. Astrophysical Journal, 2013, 779, 177.	4.5	47
35	The formation of Charon's red poles from seasonally cold-trapped volatiles. Nature, 2016, 539, 65-68.	27.8	44
36	Seasonal Evolution of Titan's Stratosphere Near the Poles. Astrophysical Journal Letters, 2018, 854, L30.	8.3	43

#	Article	IF	Citations
37	Cassini Imaging Science Subsystem observations of Titan's south polar cloud. Icarus, 2016, 270, 399-408.	2.5	39
38	3D simulations of photochemical hazes in the atmosphere of hot Jupiter HDÂ189733b. Monthly Notices of the Royal Astronomical Society, 2021, 504, 2783-2799.	4.4	36
39	Photochemical Hazes in Sub-Neptunian Atmospheres with a Focus on GJ 1214b. Astrophysical Journal, 2019, 878, 118.	4.5	34
40	The <i>Hubble</i> PanCET program: an extensive search for metallic ions in the exosphere of GJ 436 b. Astronomy and Astrophysics, 2019, 629, A47.	5.1	34
41	Laboratory Studies of Molecular Growth in the Titan Ionosphere. Journal of Physical Chemistry A, 2009, 113, 11211-11220.	2.5	32
42	Thermal escape from extrasolar giant planets. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2014, 372, 20130089.	3.4	31
43	Detection of Na, K, and H2O in the hazy atmosphere of WASP-6b. Monthly Notices of the Royal Astronomical Society, 2020, 494, 5449-5472.	4.4	30
44	WASP-52b. The effect of star-spot correction on atmospheric retrievals. Monthly Notices of the Royal Astronomical Society, 2020, 491, 5361-5375.	4.4	30
45	ELECTRODYNAMICS ON EXTRASOLAR GIANT PLANETS. Astrophysical Journal, 2014, 796, 16.	4.5	29
46	The Hubble Space Telescope PanCET Program: An Optical to Infrared Transmission Spectrum of HAT-P-32Ab. Astronomical Journal, 2020, 160, 51.	4.7	26
47	Signatures of strong magnetization and a metal-poor atmosphere for a Neptune-sized exoplanet. Nature Astronomy, 2022, 6, 141-153.	10.1	26
48	THERMAL AND CHEMICAL STRUCTURE VARIATIONS IN TITAN'S STRATOSPHERE DURING THE the<	4.5	25
49	Mass Loss by Atmospheric Escape from Extremely Close-in Planets. Astrophysical Journal, 2022, 929, 52.	4.5	24
50	Ionization balance in Titan's nightside ionosphere. Icarus, 2015, 248, 539-546.	2.5	22
51	Transmission Spectroscopy of WASP-79b from 0.6 to 5.0 νm. Astronomical Journal, 2020, 159, 5.	4.7	22
52	Impact of photochemical hazes and gases on exoplanet atmospheric thermal structure. Monthly Notices of the Royal Astronomical Society, 2021, 502, 5643-5657.	4.4	21
53	UV absorption by silicate cloud precursors in ultra-hot Jupiter WASP-178b. Nature, 2022, 604, 49-52.	27.8	21
54	Auroral electron precipitation and flux tube erosion in Titan's upper atmosphere. Icarus, 2013, 226, 186-204.	2.5	20

#	Article	IF	Citations
55	A major ice component in Pluto's haze. Nature Astronomy, 2021, 5, 289-297.	10.1	19
56	Titan brighter at twilight than in daylight. Nature Astronomy, 2017, 1, .	10.1	17
57	ABOUT THE POSSIBLE ROLE OF HYDROCARBON LAKES IN THE ORIGIN OF TITAN'S NOBLE GAS ATMOSPHERIC DEPLETION. Astrophysical Journal Letters, 2010, 721, L117-L120.	8.3	16
58	The Hubble PanCET Program: A Metal-rich Atmosphere for the Inflated Hot Jupiter HAT-P-41b. Astronomical Journal, 2021, 161, 51.	4.7	16
59	ON THE POSSIBILITY OF SIGNIFICANT ELECTRON DEPLETION DUE TO NANOGRAIN CHARGING IN THE COMA OF COMET 67P/CHURYUMOV-GERASIMENKO NEAR PERIHELION. Astrophysical Journal, 2015, 798, 130.	4.5	15
60	N2 state population in Titan's atmosphere. Icarus, 2015, 260, 29-59.	2.5	15
61	Titan's surface spectra at the Huygens landing site and Shangri-La. Icarus, 2016, 270, 291-306.	2.5	14
62	Titan's neutral atmosphere seasonal variations up to the end of the Cassini mission. Icarus, 2020, 344, 113413.	2.5	14
63	Heavy negative ion growth in Titan's polar winter. Monthly Notices of the Royal Astronomical Society, 2019, 490, 2254-2261.	4.4	13
64	Titan's haze. , 2014, , 285-321.		11
65	INCREASING POSITIVE ION NUMBER DENSITIES BELOW THE PEAK OF ION-ELECTRON PAIR PRODUCTION IN TITAN'S IONOSPHERE. Astrophysical Journal, 2014, 786, 69.	4.5	9
66	Aerosols optical properties in Titan's detached haze layer before the equinox. Icarus, 2017, 292, 13-21.	2.5	9
67	Pluto's atmosphere observations with ALMA: Spatially-resolved maps of CO and HCN emission and first detection of HNC. Icarus, 2022, 372, 114722.	2.5	9
68	SUPRATHERMAL ELECTRONS IN TITAN'S SUNLIT IONOSPHERE: MODEL–OBSERVATION COMPARISONS. Astrophysical Journal, 2016, 826, 131.	4.5	8
69	The <i>Hubble</i> PanCET program: long-term chromospheric evolution and flaring activity of the M dwarf host GJ 3470. Astronomy and Astrophysics, 2021, 650, A73.	5.1	8
70	HST PanCET program: non-detection of atmospheric escape in the warm Saturn-sized planet WASP-29 b. Astronomy and Astrophysics, 2021, 649, A40.	5.1	7
71	Titan's emission processes during eclipse. Icarus, 2014, 241, 397-408.	2.5	6
72	A large range of haziness conditions in hot-Jupiter atmospheres. Monthly Notices of the Royal Astronomical Society, 2022, 515, 4753-4779.	4.4	6

#	Article	IF	Citations
73	Heavy Positive Ion Groups in Titan's Ionosphere from Cassini Plasma Spectrometer IBS Observations. Planetary Science Journal, 2021, 2, 26.	3.6	5
74	Science goals and new mission concepts for future exploration of Titan's atmosphere, geology and habitability: titan POlar scout/orbitEr and in situ lake lander and DrONe explorer (POSEIDON). Experimental Astronomy, 2022, 54, 911-973.	3.7	5
75	The near-UV transit of HD 189733b with the <i>XMM–Newton</i> optical monitor. Monthly Notices of the Royal Astronomical Society, 2021, 506, 2453-2458.	4.4	3
76	Propane clusters in Titan's lower atmosphere: insights from a combined theory/laboratory study. Monthly Notices of the Royal Astronomical Society, 2019, 488, 676-684.	4.4	2
77	Upper Atmospheres and Ionospheres of Planets and Satellites. , 2018, , 349-374.		1
78	Upper Atmospheres and Ionospheres of Planets and Satellites. , 2017, , 1-26.		0
79	Kinetics and Branching for the Reactions of N ₂ ⁺ with C ₃ H ₄ Isomers at Low Temperatures and Implications for Titan's Atmosphere. ACS Earth and Space Chemistry, 2022, 6, 1227-1238.	2.7	0