Ingo Schmitz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4962073/publications.pdf

Version: 2024-02-01

117625 60623 10,124 83 34 81 citations g-index h-index papers 89 89 89 20299 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Gadd45 Proteins in Immunity 2.0. Advances in Experimental Medicine and Biology, 2022, 1360, 69-86.	1.6	2
2	Y192 within the SH2 Domain of Lck Regulates TCR Signaling Downstream of PLC-Î ³ 1 and Thymic Selection. International Journal of Molecular Sciences, 2022, 23, 7271.	4.1	3
3	Nfkbid Overexpression in Nonobese Diabetic Mice Elicits Complete Type 1 Diabetes Resistance in Part Associated with Enhanced Thymic Deletion of Pathogenic CD8 T Cells and Increased Numbers and Activity of Regulatory T Cells. Journal of Immunology, 2022, 209, 227-237.	0.8	6
4	Regulating T-cell differentiation through the polyamine spermidine. Journal of Allergy and Clinical Immunology, 2021, 147, 335-348.e11.	2.9	94
5	Autophagyâ€"A Story of Bacteria Interfering with the Host Cell Degradation Machinery. Pathogens, 2021, 10, 110.	2.8	24
6	Novel Insights into YB-1 Signaling and Cell Death Decisions. Cancers, 2021, 13, 3306.	3.7	10
7	A Central Role for Atg5 in Microbiota-Dependent Foxp3+ RORγt+ Treg Cell Preservation to Maintain Intestinal Immune Homeostasis. Frontiers in Immunology, 2021, 12, 705436.	4.8	5
8	The NFâ€PB transcription factor câ€Rel controls host defense against <i>Citrobacter rodentium</i> European Journal of Immunology, 2020, 50, 292-294.	2.9	1
9	Staphylococcus aureus Alpha-Toxin Limits Type 1 While Fostering Type 3 Immune Responses. Frontiers in Immunology, 2020, $11,1579$.	4.8	12
10	YB-1 Mediates TNF-Induced Pro-Survival Signaling by Regulating NF-κB Activation. Cancers, 2020, 12, 2188.	3.7	10
10	YB-1 Mediates TNF-Induced Pro-Survival Signaling by Regulating NF-κB Activation. Cancers, 2020, 12, 2188. Controlled Functional Zonation of Hepatocytes <i>In Vitro</i> by Engineering of Wnt Signaling. ACS Synthetic Biology, 2020, 9, 1638-1649.	3.7	10
	Controlled Functional Zonation of Hepatocytes <i>In Vitro</i> by Engineering of Wnt Signaling. ACS		
11	Controlled Functional Zonation of Hepatocytes <i>In Vitro</i> by Engineering of Wnt Signaling. ACS Synthetic Biology, 2020, 9, 1638-1649. c-FLIP is crucial for IL-7/IL-15-dependent NKp46+ ILC development and protection from intestinal	3.8	13
11 12	Controlled Functional Zonation of Hepatocytes <i>In Vitro</i> by Engineering of Wnt Signaling. ACS Synthetic Biology, 2020, 9, 1638-1649. c-FLIP is crucial for IL-7/IL-15-dependent NKp46+ ILC development and protection from intestinal inflammation in mice. Nature Communications, 2020, 11, 1056. Generation of Foxp3+CD25â^ Regulatory T-Cell Precursors Requires c-Rel and IκBNS. Frontiers in	3.8	13
11 12 13	Controlled Functional Zonation of Hepatocytes <i>In Vitro</i> by Engineering of Wnt Signaling. ACS Synthetic Biology, 2020, 9, 1638-1649. c-FLIP is crucial for IL-7/IL-15-dependent NKp46+ ILC development and protection from intestinal inflammation in mice. Nature Communications, 2020, 11, 1056. Generation of Foxp3+CD25â^ Regulatory T-Cell Precursors Requires c-Rel and IκBNS. Frontiers in Immunology, 2019, 10, 1583. Memantine potentiates cytarabine-induced cell death of acute leukemia correlating with inhibition of	3.8 12.8 4.8	13 12 20
11 12 13	Controlled Functional Zonation of Hepatocytes <i>In Vitro</i> Synthetic Biology, 2020, 9, 1638-1649. c-FLIP is crucial for IL-7/IL-15-dependent NKp46+ ILC development and protection from intestinal inflammation in mice. Nature Communications, 2020, 11, 1056. Generation of Foxp3+CD25â^ Regulatory T-Cell Precursors Requires c-Rel and IκBNS. Frontiers in Immunology, 2019, 10, 1583. Memantine potentiates cytarabine-induced cell death of acute leukemia correlating with inhibition of Kv1.3 potassium channels, AKT and ERK1/2 signaling. Cell Communication and Signaling, 2019, 17, 5. c-FLIP and CD95 signaling are essential for survival of renal cell carcinoma. Cell Death and Disease,	3.8 12.8 4.8 6.5	13 12 20 20
11 12 13 14	Controlled Functional Zonation of Hepatocytes ⟨i>In Vitro⟨ i⟩ by Engineering of Wnt Signaling. ACS Synthetic Biology, 2020, 9, 1638-1649. c-FLIP is crucial for IL-7/IL-15-dependent NKp46+ ILC development and protection from intestinal inflammation in mice. Nature Communications, 2020, 11, 1056. Generation of Foxp3+CD25â⁻¹ Regulatory T-Cell Precursors Requires c-Rel and IήBNS. Frontiers in Immunology, 2019, 10, 1583. Memantine potentiates cytarabine-induced cell death of acute leukemia correlating with inhibition of Kv1.3 potassium channels, AKT and ERK1/2 signaling. Cell Communication and Signaling, 2019, 17, 5. c-FLIP and CD95 signaling are essential for survival of renal cell carcinoma. Cell Death and Disease, 2019, 10, 384. Essential role of IήB⟨sub⟩NS⟨ sub⟩ for in vivo CD4⟨sup⟩+⟨ sup⟩ Tâ€eell activation, proliferation, and Th1â€eell differentiation during ⟨i⟩Listeria monocytogenes⟨ i⟩ infection in mice. European Journal of	3.8 12.8 4.8 6.5	13 12 20 20 11

#	Article	IF	CITATIONS
19	A mathematical model of the impact of insulin secretion dynamics on selective hepatic insulin resistance. Nature Communications, 2017, 8, 1362.	12.8	12
20	c-REL and IκBNS Govern Common and Independent Steps of Regulatory T Cell Development from Novel CD122-Expressing Pre-Precursors. Journal of Immunology, 2017, 199, 920-930.	0.8	16
21	UL36 Rescues Apoptosis Inhibition and In vivo Replication of a Chimeric MCMV Lacking the M36 Gene. Frontiers in Cellular and Infection Microbiology, 2017, 7, 312.	3.9	12
22	Differences and Similarities in TRAIL- and Tumor Necrosis Factor-Mediated Necroptotic Signaling in Cancer Cells. Molecular and Cellular Biology, 2016, 36, 2626-2644.	2.3	25
23	Intracellular <i>Staphylococcus aureus</i> eludes selective autophagy by activating a host cell kinase. Autophagy, 2016, 12, 2069-2084.	9.1	97
24	Atypical IÎB proteins in immune cell differentiation and function. Immunology Letters, 2016, 171, 26-35.	2.5	42
25	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
26	Acute cytotoxicity of MIRA-1/NSC19630, a mutant p53-reactivating small molecule, against human normal and cancer cells via a caspase-9-dependent apoptosis. Cancer Letters, 2015, 359, 211-217.	7.2	34
27	$\hat{\mathbb{I}}^{\text{BNS}}$ Regulates Murine Th17 Differentiation during Gut Inflammation and Infection. Journal of Immunology, 2015, 194, 2888-2898.	0.8	26
28	Autophagy in Tâ€cell development, activation and differentiation. Immunology and Cell Biology, 2015, 93, 25-34.	2.3	97
29	Abstract 4678: A novel nuclear transporter for androgen receptor and AR-variant-7 in castration resistant prostate cancer: Ideal therapeutic target. , 2015, , .		0
30	The Treg-Specific Demethylated Region Stabilizes Foxp3 Expression Independently of NF-κB Signaling. PLoS ONE, 2014, 9, e88318.	2.5	24
31	Constitutive expression of murine c-FLIPR causes autoimmunity in aged mice. Cell Death and Disease, 2014, 5, e1168-e1168.	6.3	8
32	Multiple Mechanisms Mediate Resistance to Sorafenib in Urothelial Cancer. International Journal of Molecular Sciences, 2014, 15, 20500-20517.	4.1	30
33	Glutathione depletion regulates both extrinsic and intrinsic apoptotic signaling cascades independent from multidrug resistance protein 1. Apoptosis: an International Journal on Programmed Cell Death, 2014, 19, 117-134.	4.9	13
34	Cleavage of roquin and regnase-1 by the paracaspase MALT1 releases their cooperatively repressed targets to promote TH17 differentiation. Nature Immunology, 2014, 15, 1079-1089.	14.5	238
35	Atypical IκB proteins – nuclear modulators of NF-κB signaling. Cell Communication and Signaling, 2013, 11, 23.	6.5	99
36	Phosphorylation of Atg5 by the Gadd45β–MEKK4-p38 pathway inhibits autophagy. Cell Death and Differentiation, 2013, 20, 321-332.	11.2	107

#	Article	IF	Citations
37	Cellularâ€FLIP, Raji isoform (câ€FLIP _R) modulates cell death induction upon Tâ€cell activation and infection. European Journal of Immunology, 2013, 43, 1499-1510.	2.9	16
38	ll̂ºBl̂¶ Is a Transcriptional Key Regulator of CCL2/MCP-1. Journal of Immunology, 2013, 190, 4812-4820.	0.8	81
39	Inhibition of autophagy through MAPK14-mediated phosphorylation of ATG5. Autophagy, 2013, 9, 426-428.	9.1	21
40	Gadd45 Proteins in Immunity. Advances in Experimental Medicine and Biology, 2013, 793, 51-68.	1.6	28
41	ll°BNS Protein Mediates Regulatory T Cell Development via Induction of the Foxp3 Transcription Factor. Immunity, 2012, 37, 998-1008.	14.3	82
42	Promotion of Caspase Activation by Caspase-9-mediated Feedback Amplification of Mitochondrial Damage. Journal of Clinical & Cellular Immunology, 2012, 03, .	1.5	24
43	The role of c-FLIP splice variants in urothelial tumours. Cell Death and Disease, 2011, 2, e245-e245.	6.3	13
44	Noxa/Bcl-2 Protein Interactions Contribute to Bortezomib Resistance in Human Lymphoid Cells. Journal of Biological Chemistry, 2011, 286, 17682-17692.	3.4	80
45	Snail regulates cell survival and inhibits cellular senescence in human metastatic prostate cancer cell lines. Cell Biology and Toxicology, 2010, 26, 553-567.	5.3	77
46	SLy2 targets the nuclear SAP30/HDAC1 complex. International Journal of Biochemistry and Cell Biology, 2010, 42, 1472-1481.	2.8	14
47	Gadd $45\hat{l}^2$ -induced prolonged activation of p38 kinase defines a novel pathway mediating negative selection of thymocytes. Cell Communication and Signaling, 2009, 7, .	6.5	0
48	Different forms of cell death induced by putative BCL2 inhibitors. Cell Death and Differentiation, 2009, 16, 1030-1039.	11.2	192
49	A single nucleotide polymorphism determines protein isoform production of the human c-FLIP protein. Blood, 2009, 114, 572-579.	1.4	35
50	Caspase inhibitor zVAD.fmk reduces infarct size after myocardial ischaemia and reperfusion in rats but not in mice. Resuscitation, 2008, 79, 468-474.	3.0	11
51	Mutational analyses of c-FLIPR, the only murine short FLIP isoform, reveal requirements for DISC recruitment. Cell Death and Differentiation, 2008, 15, 773-782.	11.2	55
52	Fas/CD95-Mediated Apoptosis of Type II Cells Is Blocked by <i>Toxoplasma gondii</i> Primarily via Interference with the Mitochondrial Amplification Loop. Infection and Immunity, 2008, 76, 2905-2912.	2.2	30
53	Thalidomide Induces Limb Anomalies by PTEN Stabilization, Akt Suppression, and Stimulation of Caspase-Dependent Cell Death. Molecular and Cellular Biology, 2008, 28, 529-538.	2.3	76
54	Impaired CD95-mediated Apoptosis in Autoimmunity and Occurrence of a p22 Caspase-8 Cleavage Product in JIA. Klinische Padiatrie, 2008, 220, 358-364.	0.6	1

#	Article	lF	Citations
55	Up-regulation of c-FLIPshort by NFAT contributes to apoptosis resistance of short-term activated T cells. Blood, 2008, 112, 690-698.	1.4	49
56	Thalidomide Induces Limb Anomalies by PTEN Stabilization, Akt Suppression, and Stimulation of Caspase-Dependent Cell Death. Molecular and Cellular Biology, 2008, 28, 529-538.	2.3	10
57	Loss of Caspase-9 Reveals Its Essential Role for Caspase-2 Activation and Mitochondrial Membrane Depolarization. Molecular Biology of the Cell, 2007, 18, 84-93.	2.1	68
58	Up-regulation of c-FLIPS+R upon CD40 stimulation is associated with inhibition of CD95-induced apoptosis in primary precursor B-ALL. Blood, 2007, 110, 384-387.	1.4	20
59	Toxoplasma gondii inhibits Fas/CD95-triggered cell death by inducing aberrant processing and degradation of caspase 8. Cellular Microbiology, 2007, 9, 1556-1570.	2.1	65
60	The role of CAP3 in CD95 signaling: new insights into the mechanism of procaspase-8 activation. Cell Death and Differentiation, 2006, 13, 489-498.	11.2	33
61	CD95 ligand mediates T-cell receptor-induced apoptosis of a CD4+ CD8+ double positive thymic lymphoma. Oncogene, 2006, 25, 7587-7596.	5.9	7
62	Loss of Caspase-9 Provides Genetic Evidence for the Type I/II Concept of CD95-mediated Apoptosis. Journal of Biological Chemistry, 2006, 281, 29652-29659.	3.4	65
63	Death Receptor-Induced Signaling Pathways Are Differentially Regulated by Gamma Interferon Upstream of Caspase 8 Processing. Molecular and Cellular Biology, 2005, 25, 6363-6379.	2.3	45
64	Upregulation of FLIPs upon CD40 Stimulation - A Novel Inhibititory Mechanism of CD95-Induced Apoptosis in Precursor B-ALL Blasts in Children Blood, 2005, 106, 855-855.	1.4	0
65	Resistance of Short Term Activated T Cells to CD95-Mediated Apoptosis Correlates with De Novo Protein Synthesis of c-FLIPshort. Journal of Immunology, 2004, 172, 2194-2200.	0.8	73
66	The active caspase-8 heterotetramer is formed at the CD95 DISC. Cell Death and Differentiation, 2003, 10, 144-145.	11.2	74
67	Gene expression analysis of thymocyte selection in vivo. International Immunology, 2003, 15, 1237-1248.	4.0	44
68	An IL-2-Dependent Switch Between CD95 Signaling Pathways Sensitizes Primary Human T Cells Toward CD95-Mediated Activation-Induced Cell Death. Journal of Immunology, 2003, 171, 2930-2936.	0.8	61
69	Glutathione Dependence of Caspase-8 Activation at the Death-inducing Signaling Complex. Journal of Biological Chemistry, 2002, 277, 5588-5595.	3.4	61
70	Specificity of anti-human CD95 (APO-1/Fas) antibodies. Biochemical and Biophysical Research Communications, 2002, 297, 459-462.	2.1	6
71	Peptide-Induced Negative Selection of Thymocytes Activates Transcription of an NF-ΚB Inhibitor. Molecular Cell, 2002, 9, 637-648.	9.7	119
72	Alternative Splicing of Caspase-8 mRNA during Differentiation of Human Leukocytes. Biochemical and Biophysical Research Communications, 2001, 289, 777-781.	2.1	26

#	Article	IF	CITATION
73	Cellular FLICE-inhibitory Protein Splice Variants Inhibit Different Steps of Caspase-8 Activation at the CD95 Death-inducing Signaling Complex. Journal of Biological Chemistry, 2001, 276, 20633-20640.	3.4	487
74	Molecular Mechanisms of Death-Receptor-Mediated Apoptosis. ChemBioChem, 2001, 2, 20-29.	2.6	122
75	Molecular Mechanisms of Death-Receptor-Mediated Apoptosis. ChemBioChem, 2001, 2, 20-29.	2.6	2
76	The two CD95 apoptosis signaling pathways may be a way of cells to respond to different amounts and/or forms of CD95 ligand produced in different tissues. Cell Death and Differentiation, 2000, 7, 756-758.	11.2	12
77	MAPK/ERK signaling in activated T cells inhibits CD95/Fas-mediated apoptosis downstream of DISC assembly. EMBO Journal, 2000, 19, 5418-5428.	7.8	165
78	TCR-Mediated Up-Regulation of c-FLIPshort Correlates with Resistance Toward CD95-Mediated Apoptosis by Blocking Death-Inducing Signaling Complex Activity. Journal of Immunology, 2000, 165, 6293-6300.	0.8	124
79	Regulation of death receptor-mediated apoptosis pathways. International Journal of Biochemistry and Cell Biology, 2000, 32, 1123-1136.	2.8	231
80	The Role of c-FLIP in Modulation of CD95-induced Apoptosis. Journal of Biological Chemistry, 1999, 274, 1541-1548.	3.4	707
81	Letter to the Editor. Cell Death and Differentiation, 1999, 6, 821-822.	11.2	75
82	Differential Modulation of Apoptosis Sensitivity in CD95 Type I and Type II Cells. Journal of Biological Chemistry, 1999, 274, 22532-22538.	3 . 4	534
83	Differential sialylation of cell surface glycoconjugates in a human B lymphoma cell line regulates susceptibility for CD95 (APO-1/Fas)-mediated apoptosis and for infection by a lymphotropic virus.	2.5	97