
Rafael Giraldo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4961478/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Defining a novel domain that provides an essential contribution to site-specific interaction of Rep protein with DNA. Nucleic Acids Research, 2021, 49, 3394-3408.	14.5	8
2	SEM at 75: foreword. International Microbiology, 2021, 24, 471-472.	2.4	0
3	Conversion of the OmpF Porin into a Device to Gather Amyloids on the E. coli Outer Membrane. ACS Synthetic Biology, 2021, , .	3.8	3
4	SynBio and the Boundaries between Functional and Pathogenic RepA-WH1 Bacterial Amyloids. MSystems, 2020, 5, .	3.8	3
5	Conformational Priming of RepA-WH1 for Functional Amyloid Conversion Detected by NMR Spectroscopy. Structure, 2020, 28, 336-347.e4.	3.3	6
6	Intercellular Transmission of a Synthetic Bacterial Cytotoxic Prion-Like Protein in Mammalian Cells. MBio, 2020, 11, .	4.1	8
7	Optogenetic Navigation of Routes Leading to Protein Amyloidogenesis in Bacteria. Journal of Molecular Biology, 2019, 431, 1186-1202.	4.2	8
8	Modulation of the Aggregation of the Prion-like Protein RepA-WH1 by Chaperones in a Cell-Free Expression System and in Cytomimetic Lipid Vesicles. ACS Synthetic Biology, 2018, 7, 2087-2093.	3.8	6
9	Addressing Intracellular Amyloidosis in Bacteria with RepA-WH1, a Prion-Like Protein. Methods in Molecular Biology, 2018, 1779, 289-312.	0.9	10
10	Enabling stop codon read-through translation in bacteria as a probe for amyloid aggregation. Scientific Reports, 2017, 7, 11908.	3.3	5
11	Outlining Core Pathways of Amyloid Toxicity in Bacteria with the RepA-WH1 Prionoid. Frontiers in Microbiology, 2017, 8, 539.	3.5	16
12	Reconstruction of Cytotoxic Bacterial Protein Assemblies in Lipid Vesicles. Advances in Biomembranes and Lipid Self-Assembly, 2017, 26, 173-193.	0.6	0
13	Functional amyloids as inhibitors of plasmid DNA replication. Scientific Reports, 2016, 6, 25425.	3.3	32
14	Nucleation of Amyloid Oligomers by RepAâ€WH1â€Prionoidâ€Functionalized Gold Nanorods. Angewandte Chemie - International Edition, 2016, 55, 11237-11241.	13.8	17
15	Nucleation of Amyloid Oligomers by RepAâ€WH1â€Prionoidâ€Functionalized Gold Nanorods. Angewandte Chemie, 2016, 128, 11403-11407.	2.0	1
16	RepA-WH1, the agent of an amyloid proteinopathy in bacteria, builds oligomeric pores through lipid vesicles. Scientific Reports, 2016, 6, 23144.	3.3	20
17	RepA-WH1 prionoid: Clues from bacteria on factors governing phase transitions in amyloidogenesis. Prion, 2016, 10, 41-49.	1.8	12
18	Pre-amyloid oligomers of the proteotoxic RepA-WH1 prionoid assemble at the bacterial nucleoid. Scientific Reports, 2015, 5, 14669.	3.3	19

RAFAEL GIRALDO

#	Article	IF	CITATIONS
19	Engineered bacterial hydrophobic oligopeptide repeats in a synthetic yeast prion, [REP-PSI+]. Frontiers in Microbiology, 2015, 06, 311.	3.5	9
20	Amyloidogenesis of Bacterial Prionoid RepA-WH1 Recapitulates Dimer to Monomer Transitions of RepA in DNA Replication Initiation. Structure, 2015, 23, 183-189.	3.3	26
21	Aggregation Interplay between Variants of the RepA-WH1 Prionoid in Escherichia coli. Journal of Bacteriology, 2014, 196, 2536-2542.	2.2	16
22	Direct assessment in bacteria of prionoid propagation and phenotype selection by <scp>Hsp</scp> 70 chaperone. Molecular Microbiology, 2014, 91, 1070-1087.	2.5	41
23	Structural characterization of microcin E492 amyloid formation: Identification of the precursors. Journal of Structural Biology, 2012, 178, 54-60.	2.8	22
24	Self assembly of human septin 2 into amyloid filaments. Biochimie, 2012, 94, 628-636.	2.6	22
25	RepA-WH1 <i>prionoid</i> . Prion, 2011, 5, 60-64.	1.8	17
26	Antithrombin Murcia (K241E) causing antithrombin deficiency: a possible role for altered glycosylation. Haematologica, 2010, 95, 1358-1365.	3.5	34
27	Amyloid Assemblies: Protein Legos at a Crossroads in Bottomâ€Up Synthetic Biology. ChemBioChem, 2010, 11, 2347-2357.	2.6	29
28	A DNAâ€promoted amyloid proteinopathy in <i>Escherichia coli</i> . Molecular Microbiology, 2010, 77, 1456-1469.	2.5	45
29	Voyage of RepA protein from plasmid DNA replication through amyloid aggregation towards synthetic biology. Journal of Applied Biomedicine, 2010, 8, 151-158.	1.7	1
30	Structural Analysis of the Interactions Between Hsp70 Chaperones and the Yeast DNA Replication Protein Orc4p. Journal of Molecular Biology, 2010, 403, 24-39.	4.2	11
31	Fluorescence studies of the replication initiator protein RepA in complex with operator and iteron sequences and free in solution. FEBS Journal, 2008, 275, 5393-5407.	4.7	5
32	Negative regulation of pPS10 plasmid replication: origin pairing by zippingâ€up DNAâ€bound RepA monomers. Molecular Microbiology, 2008, 68, 560-572.	2.5	24
33	Binding of sulphonated indigo derivatives to RepA-WH1 inhibits DNA-induced protein amyloidogenesis. Nucleic Acids Research, 2008, 36, 2249-2256.	14.5	29
34	Defined DNA sequences promote the assembly of a bacterial protein into distinct amyloid nanostructures. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 17388-17393.	7.1	63
35	An intrinsic 5′-deoxyribose-5-phosphate lyase activity in DNA polymerase beta from Leishmania infantum supports a role in DNA repair. DNA Repair, 2006, 5, 89-101.	2.8	13
36	Early Events in the Binding of the pPS10 Replication Protein RepA to Single Iteron and Operator DNA Sequences. Journal of Molecular Biology, 2006, 364, 909-920.	4.2	32

RAFAEL GIRALDO

#	Article	IF	CITATIONS
37	Functional interactions between homologous conditional killer systems of plasmid and chromosomal origin. FEMS Microbiology Letters, 2006, 152, 51-56.	1.8	23
38	Twenty years of the pPS10 replicon: insights on the molecular mechanism for the activation of DNA replication in iteron-containing bacterial plasmids. Plasmid, 2004, 52, 69-83.	1.4	67
39	Non-cytotoxic variants of the Kid protein that retain their auto-regulatory activity. Plasmid, 2003, 50, 120-130.	1.4	16
40	Common domains in the initiators of DNA replication inBacteria, ArchaeaandEukarya: combined structural, functional and phylogenetic perspectives. FEMS Microbiology Reviews, 2003, 26, 533-554.	8.6	79
41	A conformational switch between transcriptional repression and replication initiation in the RepA dimerization domain. Nature Structural and Molecular Biology, 2003, 10, 565-571.	8.2	78
42	Structural Changes in RepA, a Plasmid Replication Initiator, upon Binding to Origin DNA. Journal of Biological Chemistry, 2003, 278, 18606-18616.	3.4	57
43	Structural and Functional Analysis of the Kid Toxin Protein from E. coli Plasmid R1. Structure, 2002, 10, 1425-1433.	3.3	77
44	Crystallization and preliminary X-ray crystallographic studies on theparD-encoded protein Kid fromEscherichia coliplasmid R1. Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 355-358.	2.5	10
45	Genetic identification of two functional regions in the antitoxin of theparDkiller system of plasmid R1. FEMS Microbiology Letters, 2002, 206, 115-119.	1.8	31
46	Genetic identification of two functional regions in the antitoxin of the parD killer system of plasmid R1. FEMS Microbiology Letters, 2002, 206, 115-119.	1.8	2
47	Similarities between the DNA replication initiators of Gram-negative bacteria plasmids (RepA) and eukaryotes (Orc4p)/archaea (Cdc6p). Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 4938-4943.	7.1	39
48	Protein domains and conformational changes in the activation of RepA, a DNA replication initiator. EMBO Journal, 1998, 17, 4511-4526.	7.8	63
49	Functional interactions betweenchpBandparD, two homologous conditional killer systems found in theEscherichia colichromosome and in plasmid R1. FEMS Microbiology Letters, 1998, 168, 51-58.	1.8	29
50	Replication and Control of Circular Bacterial Plasmids. Microbiology and Molecular Biology Reviews, 1998, 62, 434-464.	6.6	836
51	Functional interactions between chpB and parD, two homologous conditional killer systems found in the Escherichia coli chromosome and in plasmid R1. FEMS Microbiology Letters, 1998, 168, 51-58.	1.8	2
52	The Crystal Structure of the DNA-Binding Domain of Yeast RAP1 in Complex with Telomeric DNA. Cell, 1996, 85, 125-136.	28.9	300
53	A leucine zipper motif determines different functions in a DNA replication protein EMBO Journal, 1996, 15, 925-934.	7.8	40
54	Zipperless bZips and Zipped Homeodomains Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 1995, 71, 39-44.	3.8	0

RAFAEL GIRALDO

#	Article	IF	CITATIONS
55	Host growth temperature and a conservative amino acid substitution in the replication protein of pPS10 influence plasmid host range. Journal of Bacteriology, 1995, 177, 4377-4384.	2.2	51
56	Telomere structure and function. Current Opinion in Structural Biology, 1995, 5, 311-322.	5.7	194
57	Transcription ofrepA, the Gene of the Initiation Protein of thePseudomonasPlasmid pPS10, is Autoregulated by Interactions of the RepA Protein at a Symmetrical Operator. Journal of Molecular Biology, 1995, 247, 211-223.	4.2	29
58	Imaging the Asymmetrical DNA Bend Induced by Repressor Activator Protein 1 with Scanning Tunneling Microscopy. Journal of Structural Biology, 1994, 113, 1-12.	2.8	48
59	Promotion of parallel DNA quadruplexes by a yeast telomere binding protein: a circular dichroism study Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 7658-7662.	7.1	205
60	Distortion of the DNA Double Helix by RAP1 at Silencers and Multiple Telomeric Binding Sites. Journal of Molecular Biology, 1993, 231, 293-310.	4.2	201
61	The heat-shock DnaK protein is required for plasmid R1 replication and it is dispensable for plasmid ColE1 replication. Nucleic Acids Research, 1993, 21, 5495-5499.	14.5	14
62	DnaA dependent replication of plasmid R1 occurs in the presence of point mutations that disrupt the dnaA box oforiR. Nucleic Acids Research, 1992, 20, 2547-2551.	14.5	26
63	Genetic and functional analysis of the basic replicon of pPS10, a plasmid specific for Pseudomonas isolated from Pseudomonas syringae patovar savastanoi. Journal of Molecular Biology, 1992, 223, 415-426.	4.2	72
64	Differential binding of wild-type and a mutant RepA protein to oriR sequence suggests a model for the initiation of plasmid R1 replication. Journal of Molecular Biology, 1992, 228, 787-802.	4.2	29
65	Mutations Within the Minimal Replicon of Plasmid pPS10 Increase Its Host Range. , 1992, , 225-237.		9
66	Bacterial zipper. Nature, 1989, 342, 866-866.	27.8	53