
Katharine N Suding

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4960621/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Alternative states and positive feedbacks in restoration ecology. Trends in Ecology and Evolution, 2004, 19, 46-53.	4.2	1,316
2	Plant–soil feedbacks: the past, the present and future challenges. Journal of Ecology, 2013, 101, 265-276.	1.9	1,259
3	From The Cover: Plant community responses to experimental warming across the tundra biome. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1342-1346.	3.3	1,060
4	Scaling environmental change through the communityâ€level: a traitâ€based responseâ€andâ€effect framework for plants. Global Change Biology, 2008, 14, 1125-1140.	4.2	981
5	Functional- and abundance-based mechanisms explain diversity loss due to N fertilization. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4387-4392.	3.3	879
6	Don't judge species on their origins. Nature, 2011, 474, 153-154.	13.7	781
7	Toward an Era of Restoration in Ecology: Successes, Failures, and Opportunities Ahead. Annual Review of Ecology, Evolution, and Systematics, 2011, 42, 465-487.	3.8	739
8	Restoration through reassembly: plant traits and invasion resistance. Trends in Ecology and Evolution, 2008, 23, 695-703.	4.2	570
9	Threshold models in restoration and conservation: a developing framework. Trends in Ecology and Evolution, 2009, 24, 271-279.	4.2	535
10	Plant functional trait change across a warming tundra biome. Nature, 2018, 562, 57-62.	13.7	451
11	Inferring community assembly mechanisms from functional diversity patterns: the importance of multiple assembly processes. Journal of Ecology, 2012, 100, 652-661.	1.9	441
12	Management of novel ecosystems: are novel approaches required?. Frontiers in Ecology and the Environment, 2008, 6, 547-553.	1.9	432
13	Committing to ecological restoration. Science, 2015, 348, 638-640.	6.0	393
14	Managing the whole landscape: historical, hybrid, and novel ecosystems. Frontiers in Ecology and the Environment, 2014, 12, 557-564.	1.9	378
15	Resilience in ecology: Abstraction, distraction, or where the action is?. Biological Conservation, 2014, 177, 43-51.	1.9	325
16	Ecosystem responses to water and nitrogen amendment in a California grassland. Global Change Biology, 2007, 13, 2341-2348.	4.2	306
17	Environmental and plant community determinants of species loss following nitrogen enrichment. Ecology Letters, 2007, 10, 596-607.	3.0	293
18	Niche complementarity due to plasticity in resource use: plant partitioning of chemical N forms. Ecology, 2010, 91, 3252-3260.	1.5	293

#	Article	IF	CITATIONS
19	Conditional vulnerability of plant diversity to atmospheric nitrogen deposition across the United States. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4086-4091.	3.3	287
20	When and where plantâ€soil feedback may promote plant coexistence: a metaâ€analysis. Ecology Letters, 2019, 22, 1274-1284.	3.0	195
21	Sensitivity of grassland plant community composition to spatial vs. temporal variation in precipitation. Ecology, 2013, 94, 1687-1696.	1.5	191
22	RELATIONSHIPS AMONG SPECIES TRAITS: SEPARATING LEVELS OF RESPONSE AND IDENTIFYING LINKAGES TO ABUNDANCE. Ecology, 2003, 84, 1-16.	1.5	180
23	Withinâ€Year Soil Legacies Contribute to Strong Priority Effects of Exotics on Native California Grassland Communities. Restoration Ecology, 2010, 18, 664-670.	1.4	179
24	Consequences of plant–soil feedbacks in invasion. Journal of Ecology, 2013, 101, 298-308.	1.9	174
25	Biotic mechanisms of community stability shift along a precipitation gradient. Ecology, 2014, 95, 1693-1700.	1.5	161
26	Linking individual response to biotic interactions with community structure: a traitâ€based framework. Functional Ecology, 2009, 23, 1167-1178.	1.7	151
27	Singleâ€trait functional indices outperform multiâ€trait indices in linking environmental gradients and ecosystem services in a complex landscape. Journal of Ecology, 2013, 101, 9-17.	1.9	137
28	Competitive impacts and responses of an invasive weed: dependencies on nitrogen and phosphorus availability. Oecologia, 2004, 141, 526-535.	0.9	136
29	PLANT UPTAKE OF INORGANIC AND ORGANIC NITROGEN: NEIGHBOR IDENTITY MATTERS. Ecology, 2007, 88, 1832-1840.	1.5	129
30	Contrasting trait responses in plant communities to experimental and geographic variation in precipitation. New Phytologist, 2010, 188, 565-575.	3.5	127
31	Leaf dry matter content and lateral spread predict response to land use change for six subalpine grassland species. Journal of Vegetation Science, 2007, 18, 289-300.	1.1	121
32	Phosphorus fertilization stimulates nitrogen fixation and increases inorganic nitrogen concentrations in a restored prairie. Applied Soil Ecology, 2007, 36, 238-242.	2.1	118
33	Complementarity as a mechanism of coexistence between functional groups of grasses. Journal of Ecology, 2007, 95, 1296-1305.	1.9	117
34	Do individual plant species show predictable responses to nitrogen addition across multiple experiments?. Oikos, 2005, 110, 547-555.	1.2	110
35	Historical change in coastal sage scrub in southern California, USA in relation to fire frequency and air pollution. Landscape Ecology, 2008, 23, 803-815.	1.9	93
36	Testing the Holy Grail framework: using functional traits to predict ecosystem change. New Phytologist, 2008, 180, 559-562.	3.5	92

#	Article	IF	CITATIONS
37	Incorporating clonal growth form clarifies the role of plant height in response to nitrogen addition. Oecologia, 2012, 169, 1053-1062.	0.9	90
38	RANK CLOCKS AND PLANT COMMUNITY DYNAMICS. Ecology, 2008, 89, 3534-3541.	1.5	89
39	Do We Practice What We Preach? Goal Setting for Ecological Restoration. Restoration Ecology, 2013, 21, 312-319.	1.4	89
40	Variation in the effects of vegetation and litter on recruitment across productivity gradients. Journal of Ecology, 1999, 87, 436-449.	1.9	88
41	Do Disturbances Alter Competitive Hierarchies? Mechanisms of Change Following Gap Creation. Ecology, 2001, 82, 2133.	1.5	87
42	Strain and vegetation effects on local limiting resources explain the outcomes of biotic interactions. Perspectives in Plant Ecology, Evolution and Systematics, 2010, 12, 9-19.	1.1	85
43	Plant diversity and density predict belowground diversity and function in an early successional alpine ecosystem. Ecology, 2018, 99, 1942-1952.	1.5	83
44	SCALE-DEPENDENT RESPONSES OF PLANT BIODIVERSITY TO NITROGEN ENRICHMENT. Ecology, 2008, 89, 2165-2171.	1.5	82
45	Teasing apart plant community responses to N enrichment: the roles of resource limitation, competition and soil microbes. Ecology Letters, 2016, 19, 1287-1296.	3.0	81
46	Warming shortens flowering seasons of tundra plant communities. Nature Ecology and Evolution, 2019, 3, 45-52.	3.4	79
47	Changes in alpine vegetation over 21 years: Are patterns across a heterogeneous landscape consistent with predictions?. Ecosphere, 2013, 4, 1-18.	1.0	78
48	Altered water and nitrogen input shifts succession in a southern California coastal sage community. Ecological Applications, 2014, 24, 1390-1404.	1.8	77
49	Neotropical rainforest restoration: comparing passive, plantation and nucleation approaches. Biodiversity and Conservation, 2016, 25, 2021-2034.	1.2	75
50	Rainfall variability maintains grassâ€forb species coexistence. Ecology Letters, 2019, 22, 1658-1667.	3.0	75
51	Drivers of seedling establishment success in dryland restoration efforts. Nature Ecology and Evolution, 2021, 5, 1283-1290.	3.4	75
52	Nitrogen preferences and plant-soil feedbacks as influenced by neighbors in the alpine tundra. Oecologia, 2008, 156, 625-636.	0.9	74
53	Lagging behind: have we overlooked previousâ€year rainfall effects in annual grasslands?. Journal of Ecology, 2017, 105, 484-495.	1.9	72
54	Phenological Changes in Alpine Plants in Response to Increased Snowpack, Temperature, and Nitrogen. Arctic, Antarctic, and Alpine Research, 2012, 44, 135-142.	0.4	67

#	Article	IF	CITATIONS
55	Nitrogen deposition alters plant–fungal relationships: linking belowground dynamics to aboveground vegetation change. Molecular Ecology, 2014, 23, 1364-1378.	2.0	65
56	Ecological winners and losers of extreme drought in California. Nature Climate Change, 2018, 8, 819-824.	8.1	65
57	PLANT AND MICROBE CONTRIBUTION TO COMMUNITY RESILIENCE IN A DIRECTIONALLY CHANGING ENVIRONMENT. Ecological Monographs, 2008, 78, 313-329.	2.4	62
58	Using functional diversity patterns to explore metacommunity dynamics: a framework for understanding local and regional influences on community structure. Ecography, 2014, 37, 939-949.	2.1	57
59	Tundra Trait Team: A database of plant traits spanning the tundra biome. Global Ecology and Biogeography, 2018, 27, 1402-1411.	2.7	57
60	Ecological effects of experimental drought and prescribed fire in a southern California coastal grassland. Journal of Arid Environments, 2012, 81, 59-66.	1.2	56
61	Functional diversity increases ecological stability in a grazed grassland. Oecologia, 2017, 183, 831-840.	0.9	56
62	Experimental warming differentially affects vegetative and reproductive phenology of tundra plants. Nature Communications, 2021, 12, 3442.	5.8	56
63	Patterns of root colonization by arbuscular mycorrhizal fungi and dark septate endophytes across a mostly-unvegetated, high-elevation landscape. Fungal Ecology, 2018, 36, 63-74.	0.7	55
64	Co-Occurrence Patterns of Plants and Soil Bacteria in the High-Alpine Subnival Zone Track Environmental Harshness. Frontiers in Microbiology, 2012, 3, 347.	1.5	54
65	Shrub Expansion Over the Past 62 Years in Rocky Mountain Alpine Tundra: Possible Causes and Consequences. Arctic, Antarctic, and Alpine Research, 2014, 46, 616-631.	0.4	54
66	Potential vulnerability of 348 herbaceous species to atmospheric deposition of nitrogen and sulfur in the United States. Nature Plants, 2019, 5, 697-705.	4.7	52
67	Dealing With Complexity and Extreme Events Using a Bottom-Up, Resource-Based Vulnerability Perspective. Geophysical Monograph Series, 2012, , 345-359.	0.1	50
68	Can functional traits predict plant community response to global change?. Ecosphere, 2016, 7, e01602.	1.0	49
69	Strengthening Invasion Filters to Reassemble Native Plant Communities: Soil Resources and Phenological Overlap. Restoration Ecology, 2013, 21, 390-398.	1.4	48
70	Staged invasions across disparate grasslands: effects of seed provenance, consumers and disturbance on productivity and species richness. Ecology Letters, 2014, 17, 499-507.	3.0	47
71	Competition and soil resource environment alter plant–soil feedbacks for native and exotic grasses. AoB PLANTS, 2015, 7, .	1.2	47
72	Plasticity in nitrogen form uptake and preference in response to long-term nitrogen fertilization. Plant and Soil, 2015, 394, 215-224.	1.8	47

#	Article	IF	CITATIONS
73	Frequency-dependence stabilizes competitive interactions among four annual plants. Ecology Letters, 2007, 10, 1164-1169.	3.0	46
74	Intraâ€annual rainfall regime shifts competitive interactions between coastal sage scrub and invasive grasses. Ecology, 2014, 95, 425-435.	1.5	43
75	Winters are changing: snow effects on Arctic and alpine tundra ecosystems. Arctic Science, 2022, 8, 572-608.	0.9	43
76	Species effects on resource supply rates: do they influence competitive interactions?. Plant Ecology, 2004, 175, 47-58.	0.7	42
77	Contrasting effects of hemiparasites on ecosystem processes: can positive litter effects offset the negative effects of parasitism?. Oecologia, 2011, 165, 193-200.	0.9	42
78	Nitrogen deposition, plant carbon allocation, and soil microbes: Changing interactions due to enrichment. American Journal of Botany, 2013, 100, 1458-1470.	0.8	42
79	The consequence of species loss on ecosystem nitrogen cycling depends on community compensation. Oecologia, 2006, 149, 141-149.	0.9	41
80	Scaling up the diversity–resilience relationship with traitÂdatabases and remote sensing data: the recovery ofÂproductivity after wildfire. Global Change Biology, 2016, 22, 1421-1432.	4.2	41
81	Bounded ranges of variation as a framework for future conservation and fire management. Annals of the New York Academy of Sciences, 2013, 1286, 92-107.	1.8	40
82	Vegetation change at high elevation: scale dependence and interactive effects on Niwot Ridge. Plant Ecology and Diversity, 2015, 8, 713-725.	1.0	40
83	FORUM: Sustaining ecosystem functions in a changing world: a call for an integrated approach. Journal of Applied Ecology, 2013, 50, 1124-1130.	1.9	37
84	The intervention continuum in restoration ecology: rethinking the active–passive dichotomy. Restoration Ecology, 0, , e13535.	1.4	36
85	Cattle as Dispersal Vectors of Invasive and Introduced Plants in a California Annual Grassland. Rangeland Ecology and Management, 2016, 69, 52-58.	1.1	35
86	Applying competition theory to invasion: resource impacts indicate invasion mechanisms in California shrublands. Biological Invasions, 2014, 16, 191-203.	1.2	32
87	Indirect effects of global change accumulate to alter plant diversity but not ecosystem function in alpine tundra. Journal of Ecology, 2015, 103, 351-360.	1.9	32
88	Plant colonization of moss-dominated soils in the alpine: Microbial and biogeochemical implications. Soil Biology and Biochemistry, 2017, 111, 135-142.	4.2	32
89	Building Ecological Resilience in Highly Modified Landscapes. BioScience, 2019, 69, 80-92.	2.2	32
90	MODIFYING NATIVE AND EXOTIC SPECIES RICHNESS CORRELATIONS: THE INFLUENCE OF FIRE AND SEED ADDITION. , 2006, 16, 1319-1326.		31

#	Article	IF	CITATIONS
91	Carbon flux from plants to soil: roots are a belowâ€ground source of phenolic secondary compounds in an alpine ecosystem. Journal of Ecology, 2008, 96, 421-430.	1.9	31
92	Seed Supply, Recruitment, and Assembly: Quantifying Relative Seed and Establishment Limitation in a Plant Community Context. American Naturalist, 2011, 178, 464-477.	1.0	31
93	Topographic heterogeneity explains patterns of vegetation response to climate change (1972–2008) across a mountain landscape, Niwot Ridge, Colorado. Arctic, Antarctic, and Alpine Research, 2018, 50, .	0.4	31
94	Biotic constraints on the invasion of diffuse knapweed (Centaurea diffusa) in North American grasslands. Oecologia, 2007, 151, 626-636.	0.9	30
95	Can community structure track seaâ€level rise? Stress and competitive controls in tidal wetlands. Ecology and Evolution, 2017, 7, 1276-1285.	0.8	29
96	Navigating Novelty and Risk in Resilience Management. Trends in Ecology and Evolution, 2018, 33, 863-873.	4.2	29
97	Where and how to restore in a changing world: a demographicâ€based assessment of resilience. Journal of Applied Ecology, 2017, 54, 1040-1050.	1.9	28
98	Patterns of trait convergence and divergence among native and exotic species in herbaceous plant communities are not modified by nitrogen enrichment. Journal of Ecology, 2011, 99, 1327-1338.	1.9	27
99	Effect of propagule pressure on recovery of a <scp>C</scp> alifornia grassland after an extreme disturbance. Journal of Vegetation Science, 2013, 24, 1043-1052.	1.1	27
100	Determinants of community compositional change are equally affected by global change. Ecology Letters, 2021, 24, 1892-1904.	3.0	27
101	The effects of gap creation on competitive interactions: separating changes in overall intensity from relative rankings. Oikos, 2001, 94, 219-227.	1.2	26
102	The Effect of Recycling on Plant Competitive Hierarchies. American Naturalist, 2005, 165, 609-622.	1.0	26
103	A test of the niche dimension hypothesis in an arid annual grassland. Oecologia, 2011, 166, 197-205.	0.9	25
104	Incorporating biotic factors in species distribution modeling: are interactions with soil microbes important?. Ecography, 2016, 39, 970-980.	2.1	25
105	Keep ecological restoration open and flexible. Nature Ecology and Evolution, 2018, 2, 580-580.	3.4	25
106	Effects of Nutrient Manipulations and Grass Removal on Cover, Species Composition, and Invasibility of a Novel Grassland in Colorado. Restoration Ecology, 2009, 17, 818-826.	1.4	24
107	Rapid temporal changes in root colonization by arbuscular mycorrhizal fungi and fine root endophytes, not dark septate endophytes, track plant activity and environment in an alpine ecosystem. Mycorrhiza, 2018, 28, 717-726.	1.3	24
108	Nutrient availability does not explain invasion and dominance of a mixed grass prairie by the exotic forb Centaurea diffusa Lam Applied Soil Ecology, 2006, 32, 98-110.	2.1	23

#	Article	IF	CITATIONS
109	The elusive search for tipping points. Nature Ecology and Evolution, 2020, 4, 1449-1450.	3.4	23
110	Positive litter feedbacks of an introduced species reduce native diversity and promote invasion in Californian grasslands. Applied Vegetation Science, 2017, 20, 28-39.	0.9	22
111	Biological Control Insect Use of Fertilized and Unfertilized Diffuse Knapweed in a Colorado Grassland. Environmental Entomology, 2005, 34, 225-234.	0.7	20
112	SPECIES RESPONSES TO NITROGEN FERTILIZATION IN HERBACEOUS PLANT COMMUNITIES, AND ASSOCIATED SPECIES TRAITSEcological ArchivesE089-070. Ecology, 2008, 89, 1175-1175.	1.5	20
113	Assembly of rootâ€associated bacteria communities: interactions between abiotic and biotic factors. Environmental Microbiology Reports, 2015, 7, 102-110.	1.0	20
114	Transitions and invasion along a grazing gradient in experimental California grasslands. Ecology, 2016, 97, 2319-2330.	1.5	20
115	Optimizing Available Network Resources to Address Questions in Environmental Biogeochemistry. BioScience, 2016, 66, 317-326.	2.2	20
116	Ecosystem function in complex mountain terrain: Combining models and longâ€ŧerm observations to advance processâ€based understanding. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 825-845.	1.3	19
117	The impact of invasion and subsequent removal of an exotic thistle, Cynara cardunculus, on CO2 and H2O vapor exchange in a coastal California grassland. Biological Invasions, 2008, 10, 1073-1084.	1.2	18
118	An overview of research from a high elevation landscape: the Niwot Ridge, Colorado Long Term Ecological Research programme. Plant Ecology and Diversity, 2015, 8, 597-605.	1.0	18
119	Seed-associated fungi in the alpine tundra: Both mutualists and pathogens could impact plant recruitment. Fungal Ecology, 2017, 30, 10-18.	0.7	18
120	Biotic vs abiotic controls on temporal sensitivity of primary production to precipitation across North American drylands. New Phytologist, 2021, 231, 2150-2161.	3.5	18
121	Knowledge sharing for shared success in the decade on ecosystem restoration. Ecological Solutions and Evidence, 2022, 3, e12117.	0.8	18
122	The long and the short of it: Mechanisms of synchronous and compensatory dynamics across temporal scales. Ecology, 2022, 103, e3650.	1.5	18
123	Separating direct and indirect effects of global change: a population dynamic modeling approach using readily available field data. Global Change Biology, 2014, 20, 1238-1250.	4.2	17
124	Embracing variability: environmental dependence and plant community context in ecological restoration. Restoration Ecology, 2016, 24, 119-127.	1.4	16
125	Tradeoffs in demographic mechanisms underlie differences in species abundance and stability. Nature Communications, 2018, 9, 5047.	5.8	16
126	The Abundance of Pink-Pigmented Facultative Methylotrophs in the Root Zone of Plant Species in Invaded Coastal Sage Scrub Habitat. PLoS ONE, 2012, 7, e31026.	1.1	15

#	Article	IF	CITATIONS
127	Plant–microbe interactions at multiple scales across a high-elevation landscape. Plant Ecology and Diversity, 2015, 8, 703-712.	1.0	15
128	The spatial synchrony of species richness and its relationship to ecosystem stability. Ecology, 2021, 102, e03486.	1.5	15
129	The effect of spring burning on competitive ranking of prairie species. Journal of Vegetation Science, 2001, 12, 849-856.	1.1	14
130	Grassland Arthropods Are Controlled by Direct and Indirect Interactions with Cattle but Are Largely Unaffected by Plant Provenance. PLoS ONE, 2015, 10, e0129823.	1.1	14
131	Soil Microbial Networks Shift Across a High-Elevation Successional Gradient. Frontiers in Microbiology, 2019, 10, 2887.	1.5	14
132	A new variance ratio metric to detect the timescale of compensatory dynamics. Ecosphere, 2020, 11, e03114.	1.0	14
133	Evaluating Ecosystem Services Provided by Non-Native Species: An Experimental Test in California Grasslands. PLoS ONE, 2014, 9, e75396.	1.1	13
134	Growingâ€season length and soil microbes influence the performance of a generalist bunchgrass beyond its current range. Ecology, 2020, 101, e03095.	1.5	13
135	Ecological Dynamics and Ecological Restoration. , 2016, , 27-56.		13
136	Strong feeding preference of an exotic generalist herbivore for an exotic forb: a case of invasional antagonism. Biological Invasions, 2010, 12, 3025-3031.	1.2	12
137	Opportunities and Constraints in Characterizing Landscape Distribution of an Invasive Grass from Very High Resolution Multi-Spectral Imagery. Frontiers in Plant Science, 2017, 8, 890.	1.7	12
138	Taking climate change into account: Nonâ€stationarity in climate drivers of ecological response. Journal of Ecology, 2021, 109, 1491-1500.	1.9	12
139	Grassland compost amendments increase plant production without changing plant communities. Ecosphere, 2016, 7, e01270.	1.0	11
140	Stronger effect of gastropods than rodents on seedling establishment, irrespective of exotic or native plant species origin. Oikos, 2016, 125, 1467-1477.	1.2	11
141	Water the odds? Spring rainfall and emergenceâ€related seed traits drive plant recruitment. Oikos, 2021, 130, 1665-1678.	1.2	11
142	Measuring at all scales: sourcing data for more flexible restoration references. Restoration Ecology, 0, , e13541.	1.4	11
143	Nematode community diversity and function across an alpine landscape undergoing plant colonization of previously unvegetated soils. Soil Biology and Biochemistry, 2021, 161, 108380.	4.2	11
144	Litter-driven feedbacks influence plant colonization of a high elevation early successional ecosystem. Plant and Soil, 2019, 444, 71-85.	1.8	10

#	Article	IF	CITATIONS
145	Warming of alpine tundra enhances belowground production and shifts community towards resource acquisition traits. Ecosphere, 2020, 11, e03270.	1.0	10
146	Microâ€scale geography of synchrony in a serpentine plant community. Journal of Ecology, 2021, 109, 750-762.	1.9	10
147	Intraâ€annual precipitation effects on annual grassland productivity and phenology are moderated by community responses. Journal of Ecology, 2022, 110, 162-172.	1.9	10
148	Global change reâ€structures alpine plant communities through interacting abiotic and biotic effects. Ecology Letters, 2022, 25, 1813-1826.	3.0	10
149	Insights from a Crossâ€Disciplinary Seminar: 10 Pivotal Papers for Ecological Restoration. Restoration Ecology, 2012, 20, 147-152.	1.4	9
150	Environmental gradients determine the potential for ecosystem engineering effects. Oikos, 2019, 128, 994-1004.	1.2	9
151	The effects of nitrogen deposition and invasion on litter fuel quality and decomposition in a Stipa pulchra grassland. Journal of Arid Environments, 2019, 162, 35-44.	1.2	9
152	Evidence for phosphorus limitation in high-elevation unvegetated soils, Niwot Ridge, Colorado. Biogeochemistry, 2020, 147, 1-13.	1.7	9
153	Separating sources of densityâ€dependent and densityâ€independent establishment limitation in invading species. Journal of Ecology, 2017, 105, 436-444.	1.9	8
154	Climate Variability Structures Plant Community Dynamics in Mediterranean Restored and Reference Tidal Wetlands. Water (Switzerland), 2017, 9, 209.	1.2	8
155	Temporal variability in production is not consistently affected by global change drivers across herbaceous-dominated ecosystems. Oecologia, 2020, 194, 735-744.	0.9	8
156	Botany and a changing world: Introduction to the Special Issue on Global Biological Change. American Journal of Botany, 2013, 100, 1229-1233.	0.8	7
157	Animals alter precipitation legacies: Trophic and ecosystem engineering effects on plant community temporal dynamics. Journal of Ecology, 2018, 106, 1454-1469.	1.9	7
158	Do plant–soil interactions influence how the microbial community responds to environmental change?. Ecology, 2022, 103, e03554.	1.5	7
159	Seed bank bias: Differential tracking of functional traits in the seed bank and vegetation across a gradient. Ecology, 2022, 103, e3651.	1.5	7
160	Understanding invasions: the rise and fall of diffuse knapweed (Centaurea diffusa) in North America. , 2005, , 129-139.		6
161	Capacity for change: three core attributes of adaptive capacity that bolster restoration efficacy. Restoration Ecology, 0, , .	1.4	6
1(0	A loop in the loop Nature $2012 = 502 = 472 = 472$	10 5	

162 A leak in the loop. Nature, 2013, 503, 472-473.

13.7 5

#	Article	IF	CITATIONS
163	Restoration Within Protected Areas: When and How to Intervene to Manage Plant Invasions?. , 2013, , 599-618.		5
164	Do tradeâ€offs govern plant species' responses to different global change treatments?. Ecology, 2022, 103, e3626.	1.5	5
165	Interactive effects of temporal and spatial fire characteristics on the population dynamics of a fireâ€dependent <scp>C</scp> ypress species. Journal of Applied Ecology, 2013, 50, 929-938.	1.9	4
166	Connectivity: insights from the U.S. Long Term Ecological Research Network. Ecosphere, 2021, 12, e03432.	1.0	4
167	FACTORS AFFECTING UNDERSTORY ESTABLISHMENT IN COASTAL SAGE SCRUB RESTORATION. Madro \tilde{A} ±o, 2006, 53, 55-59.	0.3	3
168	Leaf temperatures mediate alpine plant communities' response to a simulated extended summer. Ecology and Evolution, 2019, 9, 1227-1243.	0.8	3
169	Catchmentâ€scale observations at the Niwot Ridge <scp>longâ€ŧerm</scp> ecological research site. Hydrological Processes, 2021, 35, e14320.	1.1	3
170	Prescribed Fire Effects on Population Dynamics of an Annual Grassland. Rangeland Ecology and Management, 2016, 69, 423-429.	1.1	2
171	Making research relevant: Sharing climate change research with rangeland advisors to transform results into drought resilience. Rangelands, 2021, 43, 185-193.	0.9	2
172	Nitrogen addition, not heterogeneity, alters the relationship between invasion and native decline in California grasslands. Oecologia, 2021, 197, 651-660.	0.9	2
173	The presence of a foreign microbial community promotes plant growth and reduces filtering of root fungi in the arctic-alpine plant <i>Silene acaulis</i> . Plant Ecology and Diversity, 2020, 13, 377-390.	1.0	2
174	The influence of lifeâ€history strategy on ecosystem sensitivity to resource fluctuations. Journal of Ecology, 2021, 109, 4081-4091.	1.9	1
175	Seeking diverse nominations for ESA awards. Frontiers in Ecology and the Environment, 2019, 17, 303-303.	1.9	0