Huile Gao

List of Publications by Year

 in descending order[^0]
$1 \quad$ Recent progress in drug delivery. Acta Pharmaceutica Sinica B, 2019, 9, 1145-1162.

Self-Targeting Fluorescent Carbon Dots for Diagnosis of Brain Cancer Cells. ACS Nano, 2015, 9, 11455-11461.

Progress and perspectives on targeting nanoparticles for brain drug delivery. Acta Pharmaceutica
Sinica B, 2016, 6, 268-286.

Targeting mesoporous silica-encapsulated gold nanorods for chemo-photothermal therapy with
near-infrared radiation. Biomaterials, 2013, 34, 3150-3158.

Tumor microenvironment sensitive doxorubicin delivery and release to glioma using angiopep-2
decorated gold nanoparticles. Biomaterials, 2015, 37, 425-435.
5.7

Size-Tunable Strategies for a Tumor Targeted Drug Delivery System. ACS Central Science, 2020, 6,
100-116.

Preparation and brain delivery property of biodegradable polymersomes conjugated with OX26.
$7 \quad$ Preparation and brain delivery proll of Controlled Release, 2008, 128, 120-127.
4.8

259

8 Ligand modified nanoparticles increases cell uptake, alters endocytosis and elevates glioma
distribution and internalization. Scientific Reports, 2013, 3, 2534.

Matrix metalloproteinase-sensitive size-shrinkable nanoparticles for deep tumor penetration and pH
triggered doxorubicin release. Biomaterials, 2015, 60, 100-110.
$9 \quad$ Matrix metalloproteinase-sensitive size-shrinkable nanoparticles

Precise glioma targeting of and penetration by aptamer and peptide dual-functioned nanoparticles.
10 Biomaterials, 2012, 33, 5115-5123.
5.7

247

11 Enzyme-triggered size shrink and laser-enhanced NO release nanoparticles for deep tumor penetration
and combination therapy. Biomaterials, 2018, 168, 64-75.
$5.7 \quad 234$

Increased Gold Nanoparticle Retention in Brain Tumors by <i>in Situ Enzyme-Induced Aggregation.
ACS Nano, 2016, 10, 10086-10098.
7.3

229
1.6

257

Development and application of hyaluronic acid in tumor targeting drug delivery. Acta Pharmaceutica
Sinica B, 2019, 9, 1099-1112.
Sinica B, 2019, 9, 1099-1112.
5.7

211

Paclitaxel loaded liposomes decorated with a multifunctional tandem peptide for glioma targeting.
Biomaterials, 2014, 35, 4835-4847.
5.7

210

Theranostic size-reducible and no donor conjugated gold nanocluster fabricated hyaluronic acid
15 nanoparticle with optimal size for combinational treatment of breast cancer and lung metastasis.
4.8

200
Journal of Controlled Release, 2018, 278, 127-139.

Nanoparticles for modulating tumor microenvironment to improve drug delivery and tumor therapy.
Pharmacological Research, 2017, 126, 97-108.
3.1

181

The impact of protein corona on the behavior and targeting capability of nanoparticle-based delivery
system. International Journal of Pharmaceutics, 2018, 552, 328-339.
2.6

178
19

Sequentially responsive biomimetic nanoparticles with optimal size in combination with checkpoint
blockade for cascade synergetic treatment of breast cancer and lung metastasis. Biomaterials, 2019,
5.7

149
217, 119309.
Theranostic nanoparticles with tumor-specific enzyme-triggered size reduction and drug release to
20 perform photothermal therapy for breast cancer treatment. Acta Pharmaceutica Sinica B, 2019, 9,
5.7 410-420.

21	Targeted Delivery of Nano-Therapeutics for Major Disorders of the Central Nervous System. Pharmaceutical Research, 2013, 30, 2485-2498.	1.7	144
22	Aggregable Nanoparticles-Enabled Chemotherapy and Autophagy Inhibition Combined with Anti-PD-L1 Antibody for Improved Glioma Treatment. Nano Letters, 2019, 19, 8318-8332.	4.5	142
23	Tumorâ€Microenvironmentâ€Responsive Nanomedicine for Enhanced Cancer Immunotherapy. Advanced Science, 2022, 9, e2103836.	5.6	142
24	Synergistic Dual-Ligand Doxorubicin Liposomes Improve Targeting and Therapeutic Efficacy of Brain Glioma in Animals. Molecular Pharmaceutics, 2014, 11, 2346-2357.	2.3	140
25	Nanogel: A Versatile Nano-Delivery System for Biomedical Applications. Pharmaceutics, 2020, 12, 290.	2.0	140

26

Macrophage-mimic shape changeable nanomedicine retained in tumor for multimodal therapy of breast cancer. Journal of Controlled Release, 2020, 321, 589-601.
4.8

135
27
28

Lactoferrin-Conjugated Biodegradable Polymersome Holding Doxorubicin and Tetrandrine for
Chemotherapy of Clioma Rats. Molecular Pharmaceutics, 2010, 7, 1995-2005.
Chemotherapy of Glioma Rats. Molecular Pharmaceutics, 2010, 7, 1995-2005.

Whole-cell SELEX aptamer-functionalised poly(ethyleneglycol)-poly(Î μ-caprolactone) nanoparticles for enhanced targeted glioblastoma therapy. Biomaterials, 2012, 33, 6264-6272.
5.7

132
Angiopep-2 and Activatable Cell-Penetrating Peptide Dual-Functionalized Nanoparticles for Systemic
Clioma-Targeting Delivery. Molecular Pharmaceutics, 2014, 11, 2755-2763.

The interaction of nanoparticles with plasma proteins and the consequent influence on
30 nanoparticles behavior. Expert Opinion on Drug Delivery, 2014, 11, 409-420.

Advances of nanoparticles as drug delivery systems for disease diagnosis and treatment. Chinese	4.8
31	124

The progress and perspective of nanoparticle-enabled tumor metastasis treatment. Acta Pharmaceutica
32 Sinica $B, 2020,10,2037-2053$.
$5.7 \quad 119$

33 The progress and perspective of strategies to improve tumor penetration of nanomedicines. Chinese Chemical Letters, 2021, 32, 1341-1347.
4.8

118

Overcoming the biological barriers in the tumor microenvironment for improving drug delivery and efficacy. Journal of Materials Chemistry B, 2020, 8, 6765-6781. 28, 1802227.
RGD and Interleukin-13 Peptide Functionalized Nanoparticles for Enhanced Clioblastoma Cells and

$37 \quad$| Neovasculature Dual Targeting Delivery and Elevated Tumor Penetration. Molecular Pharmaceutics |
| :--- |
| $2014,11,1042-1052 . ~$ | .

A Novel Strategy through Combining iRGD Peptide with Tumor-Microenvironment-Responsive and
40 Multistage Nanoparticles for Deep Tumor Penetration. ACS Applied Materials \& Interfaces, 2015, 7,
2.6
2.8

92
A simple one-step method to prepare fluorescent carbon dots and their potential application in non-invasive glioma imaging. Nanoscale, 2014, 6, 10040-10047.

Tumor Microenvironmentâ€Responsive Dual Drug Dimerâ€Łoaded PEGylated Bilirubin Nanoparticles for
51 Improved Drug Delivery and Enhanced Immuneâ€Chemotherapy of Breast Cancer. Advanced Functional
$7.8 \quad 92$
Materials, 2019, 29, 1901896.
Increased tumor targeted delivery using a multistage liposome system functionalized with RGD, TAT and cleavable PEG. International Journal of Pharmaceutics, 2014, 468, 26-38.

Diffusion and Synthesized Anti-Glioma Therapy. Theranostics, 2016, 6, 177-191.
55
56

The protein corona hampers the transcytosis of transferrin-modified nanoparticles through
55 bloodâ $€_{\text {" brain barrier and attenuates their targeting ability to brain tumor. Biomaterials, 2021, 274, }}$
5.7

90
120888.

56
Metformin Mediated PDâ€Ł 1 Downregulation in Combination with Photodynamicâ€ $\downarrow m m$ unotherapy for Treatment of Breast Cancer. Advanced Functional Materials, 2021, 31, 2007149.
7.8

89

57 Metal-organic framework-based nanomaterials for biomedical applications. Chinese Chemical Letters,
4.8 2020, 31, 1060-1070.

Tumor cells and neovasculature dual targeting delivery for glioblastoma treatment. Biomaterials, 2014, 35, 2374-2382.
$5.7 \quad 86$
58 2014, 35, 23742382.

Ligand-Mediated and Enzyme-Directed Precise Targeting and Retention for the Enhanced Treatment of Clioblastoma. ACS Applied Materials \& Interfaces, 2017, 9, 20348-20360.
4.0

85

60 Carrier-free nanodrugs with efficient drug delivery and release for cancer therapy: From intrinsic physicochemical properties to external modification. Bioactive Materials, 2022, 8, 220-240.
8.6

A combinational chemo-immune therapy using an enzyme-sensitive nanoplatform for dual-drug
A combinational chemo-immune therapy using an enzyme-sensitive nanoplat
delivery to specific sites by cascade targeting. Science Advances, 2021, 7, .
$4.7 \quad 81$

D-T7 Peptide-Modified PEGylated Bilirubin Nanoparticles Loaded with Cediranib and Paclitaxel for
Antiangiogenesis and Chemotherapy of Clioma. ACS Applied Materials \& Interfaces, 2019, 11, 176-186.
4.0

79

63 Harnessing carbon monoxide-releasing platforms for cancer therapy. Biomaterials, 2020, 255, 120193.
$5.7 \quad 78$
64

Study and evaluation of mechanisms of dual targeting drug delivery system with tumor
microenvironment assays compared with normal assays. Acta Biomaterialia, 2014, 10, 858-867.

65	Cell-penetrating Peptide-based Intelligent Liposomal Systems for Enhanced Drug Delivery. Current Pharmaceutical Biotechnology, 2014, 15, 210-219.	0.9	77
66	Linear Chimeric Triblock Molecules Selfâ€Assembled Micelles with Controllably Transformable Property to Enhance Tumor Retention for Chemoâ€Photodynamic Therapy of Breast Cancer. Advanced Functional Materials, 2019, 29, 1808462.	7.8	76
67	Self-Assembled Polymersomes Conjugated with Lactoferrin as Novel Drug Carrier for Brain Delivery. Pharmaceutical Research, 2012, 29, 83-96.	1.7	73

Selfâ€Delivered Supramolecular Nanomedicine with Transformable Shape for Ferroceneâ€Amplified
68 Photodynamic Therapy of Breast Cancer and Bone Metastases. Advanced Functional Materials, 2021, 31,
7.8

73
2104645.

Endo/Lysosomeâ€Escapable Delivery Depot for Improving BBB Transcytosis and Neuron Targeted Therapy
of Alzheimer's Disease. Advanced Functional Materials, 2020, 30, 1909999.

Brain delivery and cellular internalization mechanisms for transferrin conjugated biodegradable
polymersomes. International Journal of Pharmaceutics, 2011, 415, 284-292.

Glioma-homing peptide with a cell-penetrating effect for targeting delivery with enhanced glioma

Simultaneous delivery of therapeutic antagomirs with paclitaxel for the management of metastatic
73 tumors by a pH-responsive anti-microbial peptide-mediated liposomal delivery system. Journal of
Controlled Release, 2015, 197, 208-218.

Enhanced Glioma Targeting and Penetration by Dual-Targeting Liposome Co-modified with T7 and TAT. Journal of Pharmaceutical Sciences, 2014, 103, 3891-3901.
1.6

Antitumor and Antimetastasis Activities of Heparin-based Micelle Served As Both Carrier and Drug. ACS Applied Materials \& Interfaces, 2016, 8, 9577-9589.

Co-delivery of doxorubicin and P-gp inhibitor by a reduction-sensitive liposome to overcome
76 multidrug resistance, enhance anti-tumor efficiency and reduce toxicity. Drug Delivery, 2016, 23,
2.5

1130-1143.

77 Normalizing Tumor Vessels To Increase the Enzyme-Induced Retention and Targeting of Gold
Nanoparticle for Breast Cancer Imaging and Treatment. Molecular Pharmaceutics, 2017, 14, 3489-3498.
2.3

Multifunctional Tandem Peptide Modified Paclitaxel-Loaded Liposomes for the Treatment of
78 Vasculogenic Mimicry and Cancer Stem Cells in Malignant Glioma. ACS Applied Materials \&
Interfaces, 2015, 7, 16792-16801.
Significantly enhanced tumor cellular and lysosomal hydroxychloroquine delivery by smart
Significantly enhanced tumor cellular and lysosomal hydroxychloroquine delivery by smart
liposomes for optimal autophagy inhibition and improved antitumor efficiency with liposomal
4.3
doxorubicin. Autophagy, 2016, 12, 949-962.
80 GSH-responsive SN38 dimer-loaded shape-transformable nanoparticles with iRGD for enhancing chemo-photodynamic therapy. Acta Pharmaceutica Sinica B, 2020, 10, 2348-2361.
5.7

61
81 Shaping Tumor Microenvironment for Improving Nanoparticle Delivery. Current Drug Metabolism,
81 2016, 17, 731-736.
 Highly Effective Antiglioma Therapy through the Bloodâ€"Brain Barrier. ACS Applied Materials \&
4.0 Interfaces, 2015, 7, 21442-21454.

83 Targeted delivery of transferrin and TAT co-modified liposomes encapsulating both paclitaxel and
doxorubicin for melanoma. Drug Delivery, 2016, 23, 1171-1183.

84 Shape Transformable Strategies for Drug Delivery. Advanced Functional Materials, 2021, 31, 2009765.
7.8

57
85 Peptide mediated active targeting and intelligent particle size reduction-mediated enhanced
85 penetrating of fabricated nanoparticles for triple-negative breast cancer treatment. Oncotarget, 2015,
0.8

57
$6,41258-41274$.

Tumor homing cell penetrating peptide decorated nanoparticles used for enhancing tumor targeting delivery and therapy. International Journal of Pharmaceutics, 2015, 478, 240-250.
2.6

56

Enhanced gene delivery efficiency of cationic liposomes coated with PEGylated hyaluronic acid for
87 anti P-glycoprotein siRNA: A potential candidate for overcoming multi-drug resistance. International
$2.6 \quad 55$
Journal of Pharmaceutics, 2014, 477, 590-600.
Furin-instructed aggregated gold nanoparticles for re-educating tumor associated macrophages and overcoming breast cancer chemoresistance. Biomaterials, 2021, 275, 120891.
5.7

54

89 Anti-glioma effect and safety of docetaxel-loaded nanoemulsion. Archives of Pharmacal Research,
2012, 35, 333-341.

Huile Gao

Nanovaccineâ€Based Strategies to Overcome Challenges in the Whole Vaccination Cascade for Tumor
Immunotherapy. Small, 2021, 17, e2006000.
476-484.

$99 \quad$| A nanocleaner specifically penetrates the bloodâ€'brain barrier at lesions to clean toxic proteins and |
| :--- |
| regulate inflammation in Alzheimer's disease. Acta Pharmaceutica Sinica B, 2021, 11, 4032-4044. |

Self-propelled nanomotor reconstructs tumor microenvironment through synergistic hypoxia
alleviation and glycolysis inhibition for promoted anti-metastasis. Acta Pharmaceutica Sinica B, 2021,
$11,2924-2936 . ~$

A roadmap to pulmonary delivery strategies for the treatment of infectious lung diseases. Journal of
Nanobiotechnology, 2022, 20, 101.

$102 \begin{aligned} & \text { Membrane-Associated Heat Sh } \\ & \text { Targets. Cells, 2020, 9, 1263. }\end{aligned}$
109

> Enhanced antitumor and anti-metastasis efficiency via combined treatment with CXCR4 antagonist and liposomal doxorubicin. Journal of Controlled Release, 2014, 196, 324-331.
4.8

42

Incorporation of lapatinib into coreâ€"shell nanoparticles improves both the solubility and anti-glioma
2.6 effects of the drug. International Journal of Pharmaceutics, 2014, 461, 478-488.

41
Angiopep-2 and activatable cell penetrating peptide dual modified nanoparticles for enhanced tumor
targeting and penetrating. International Journal of Pharmaceutics, 2014, 474, 95-102. Losartan loaded liposomes improve the antitumor efficacy of liposomal paclitaxel modified with pH
2.6
1.1 Technology, 2018, 23, 13-21.
$113 \begin{aligned} & \text { Dual-responsive nanoparticles with transformable shape and reversible charge for amplified } \\ & \text { chemo-photodynamic therapy of breast cancer. Acta Pharmaceutica Sinica B, 2022, 12, 3354-3366 }\end{aligned}$
5.7
6.6

39
115 The impact of protein corona on the biological behavior of targeting nanomedicines. International Journal of Pharmaceutics, 2022, 614, 121458.
116 Progress on the diagnosis and evaluation of brain tumors. Cancer Imaging, 2013, 13, 466-481.

117 Multistage drug delivery system based on microenvironment-responsive dendrimerâ€ "gelatin

 nanoparticles for deep tumor penetration. RSC Advances, 2015, 5, 85933-85937.2.6

39
1.2

37

Taming Cell Penetrating Peptides: Never Too Old To Teach Old Dogs New Tricks. Molecular
118 Pharmaceutics, 2015, 12, 3105-3118.
2.3

36

119 Intelligent lesion bloodâ $€^{\text {"bbain }}$ barrier targeting nano-missiles for Alzheimer's disease treatment by
anti-neuroinflammation and neuroprotection. Acta Pharmaceutica Sinica B, 2022, 12, 1987-1999.
$5.7 \quad 35$

120 Co-delivery of photosensitizer and diclofenac through sequentially responsive bilirubin
5.7

35
121. Incorporation of lapatinib into lipoprotein-like nanoparticles with enhanced water solubility and anti-tumor effect in breast cancer. Nanomedicine, 2013, 8, 1429-1442.

Targeting delivery and deep penetration using multistage nanoparticles for triple-negative breast cancer. RSC Advances, 2015, 5, 64303-64317.
1.7

33
1.7

33

123 Internalization and subcellular fate of aptamer and peptide dual-functioned nanoparticles. Journal of
Drug Targeting, 2014, 22, 450-459.
123 Internalization and subcellular fate of aptamer and peptide dual-functioned nanoparticles. Journal of
2.1

32

Efficient siRNA transfer to knockdown a placenta specific IncRNA using RGD-modified nano-liposome:
A new preeclampsia-like mouse model. International Journal of Pharmaceutics, 2018, 546, 115-124.

In vitro and in vivo intracellular distribution and anti-glioblastoma effects of docetaxel-loaded
nanoparticles functioned with IL-13 peptide. International Journal of Pharmaceutics, 2014, 466, 8-17.

Nanoparticles in precision medicine for ovarian cancer: From chemotherapy to immunotherapy.
International Journal of Pharmaceutics, 2020, 591, 119986.
Intranasal Delivery of BACE1 siRNA and Rapamycin by Dual Targets Modified Nanoparticles for
Alzheimer's Disease Therapy. Small, 2022, 18, .

133	Melanin-originated carbonaceous dots for triple negative breast cancer diagnosis by fluorescence and photoacoustic dual-mode imaging. Journal of Colloid and Interface Science, 2017, 497, 226-232.	5.0	27
134	Synergistic Combination of Doxorubicin and Paclitaxel Delivered by Blood Brain Barrier and Clioma Cells Dual Targeting Liposomes for Chemotherapy of Brain Clioma. Current Pharmaceutical Biotechnology, 2016, 17, 636-650.	0.9	26
135	Modulating the bloodâ $€$ "brain tumor barrier for improving drug delivery efficiency and efficacy. View, 2022, 3, .	2.7	26
136	Advanced Biomaterials for Cellâ€£pecific Modulation and Restore of Cancer Immunotherapy. Advanced Science, 2022, 9, e2200027.	5.6	26
137	The construction of inÂvitro nasal cavity-mimic M-cell model, design of M cell-targeting nanoparticles and evaluation of mucosal vaccination by nasal administration. Acta Pharmaceutica Sinica B, 2020, 10, 1094-1105.	5.7	25

Suppression for lung metastasis by depletion of collagen I and lysyl oxidase via losartan assisted with
2.5

Unmasking CSF protein corona: Effect on targeting capacity of nanoparticles. Journal of Controlled
145

A simple one-step synthesis of melanin-originated red shift emissive carbonaceous dots for bioimaging.
Journal of Colloid and Interface Science, $2016,480,85-90$.

Nanoformulations of small molecule protein tyrosine kinases inhibitors potentiate targeted cancer therapy. International Journal of Pharmaceutics, 2020, 573, 118785.
2.6

Intelligent Size-Changeable Nanoparticles for Enhanced Tumor Accumulation and Deep Penetration.
ACS Applied Bio Materials, 2020, 3, 5455-5462.
Polyethylene glycol\–polylactic acid nanoparticles modified with
cysteine\–arginine\–glutamic acid\–lysine\–alanine fibrin-homing peptide for glioblastoma therapy by enhanced retention effect. International Journal of
3.3 Nanomedicine, 2014, 9, 5261.

Pretreatment with chemotherapeutics for enhanced nanoparticles accumulation in tumor: the
potential role of C 2 cycle retention effect. Scientific Reports, $2014,4,4492$.

Recent Advances in Gold Nanoformulations for Cancer Therapy. Current Drug Metabolism, 2018, 19, 768-780.

Development of an anti-microbial peptide-mediated liposomal delivery system: a novel approach towards pH-responsive anti-microbial peptides. Drug Delivery, 2016, 23, 1163-1170.

Preparation and biological evaluation of photoluminescent carbonaceous nanospheres. Journal of Colloid and Interface Science, 2014, 429, 77-82.

Ultrasound-mediated microbubbles cavitation enhanced chemotherapy of advanced prostate cancer by increasing the permeability of blood-prostate barrier. Translational Oncology, 2021, 14, 101177.

Unraveling the Effect of Breast Cancer Patientsâ€ $€^{\text {TM }}$ Plasma on the Targeting Ability of Folic Acid-Modified
154 Unraveling the Effect of Breast Cancer Patientsâ€ ${ }^{\text {TM }}$ Plasma on the Target
2.3

17

Chondroitin sulfate-based prodrug nanoparticles enhance photodynamic immunotherapy via Golgi
155 Chondroitin sulfate-based prodrug nanoparticles ennance pho
4.1

17

Intracellular delivery mechanism and brain delivery kinetics of biodegradable cationic bovine serum
156 albumin-conjugated polymersomes. International Journal of Nanomedicine, 2012, 7, 3421.
3.3

16

Fluorescent carbonaceous nanospheres as biological probe for noninvasive brain imaging. Journal of Colloid and Interface Science, 2014, 436, 227-233.

In vitro and in vivo toxicology of bare and PEGylated fluorescent carbonaceous nanodots in mice and zebrafish: the potential relationship with autophagy. RSC Advances, 2015, 5, 38547-38557.

Behavior and anti-glioma effect of lapatinib-incorporated lipoprotein-like nanoparticles. Nanotechnology, 2012, 23, 435101.
1.3

Utilizing G2/M retention effect to enhance tumor accumulation of active targeting nanoparticles.
Scientific Reports, 2016, 6, 27669.
1.6

15

A functional nanocarrier that copenetrates extracellular matrix and multiple layers of tumor cells
161 for sequential and deep tumor autophagy inhibitor and chemotherapeutic delivery. Autophagy, 2017, 13,
4.3

359-370.

Noninvasive \<I\>In\</I\> \<I\>Vivo\</I\> Diagnosis of Brain Clioma Using RGD-Decorated
Fluorescent Carbonaceous Nanospheres. Journal of Biomedical Nanotechnology, 2015, 11, 2148-2157.

Acidâ $€$ Responsive Dualâ€đargeted Nanoparticles Encapsulated Aspirin Rescue the Immune Activation and

165 Prodrug strategy for enhanced therapy of central nervous system disease. Chemical Communications, 2021, 57, 8842-8855.

Glymphatic System and Subsidiary Pathways Drive Nanoparticles Away from the Brain. Research, 2022,

169 | Cabazitaxel and indocyanine green co-delivery tumor-targeting nanoparticle for improved antitumor |
| :--- |
| efficacy and minimized drug toxicity. Journal of Drug Targeting, 2017, 25, 179-187. |

$170 \quad$| Changes in target ability of nanoparticles due to protein corona composition and disease state. Asian |
| :--- |
| Journal of Pharmaceutical Sciences, 2022, 17, 401-411. |

$171 \quad$| When imaging meets size-transformable nanosystems. Advanced Drug Delivery Reviews, 2022, 183, |
| :--- |
| 114176. |

173 Polyethylene glycol modification decreases the cardiac toxicity of carbonaceous dots in mouse and

174 Glioma Targeting and Anti-glioma Effect of Interleukin 13 Peptide and RGD Peptide Dual Functionalized Nanoparticles. Current Pharmaceutical Biotechnology, 2014, 14, 1118-1126.

[^1]
[^0]: Source: https:/|exaly.com/author-pdf/4960013/publications.pdf
 Version: 2024-02-01

[^1]: Perspective on Strategies to Reduce the Neurotoxicity of Nanomaterials and Nanomedicines. , 2017, , 331-336.

