List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4960013/publications.pdf Version: 2024-02-01

HUUE CAO

#	Article	IF	CITATIONS
1	Recent progress in drug delivery. Acta Pharmaceutica Sinica B, 2019, 9, 1145-1162.	5.7	529
2	Self-Targeting Fluorescent Carbon Dots for Diagnosis of Brain Cancer Cells. ACS Nano, 2015, 9, 11455-11461.	7.3	439
3	Progress and perspectives on targeting nanoparticles for brain drug delivery. Acta Pharmaceutica Sinica B, 2016, 6, 268-286.	5.7	375
4	Targeting mesoporous silica-encapsulated gold nanorods for chemo-photothermal therapy with near-infrared radiation. Biomaterials, 2013, 34, 3150-3158.	5.7	329
5	Tumor microenvironment sensitive doxorubicin delivery and release to glioma using angiopep-2 decorated gold nanoparticles. Biomaterials, 2015, 37, 425-435.	5.7	284
6	Size-Tunable Strategies for a Tumor Targeted Drug Delivery System. ACS Central Science, 2020, 6, 100-116.	5.3	281
7	Preparation and brain delivery property of biodegradable polymersomes conjugated with OX26. Journal of Controlled Release, 2008, 128, 120-127.	4.8	259
8	Ligand modified nanoparticles increases cell uptake, alters endocytosis and elevates glioma distribution and internalization. Scientific Reports, 2013, 3, 2534.	1.6	257
9	Matrix metalloproteinase-sensitive size-shrinkable nanoparticles for deep tumor penetration and pH triggered doxorubicin release. Biomaterials, 2015, 60, 100-110.	5.7	249
10	Precise glioma targeting of and penetration by aptamer and peptide dual-functioned nanoparticles. Biomaterials, 2012, 33, 5115-5123.	5.7	247
11	Enzyme-triggered size shrink and laser-enhanced NO release nanoparticles for deep tumor penetration and combination therapy. Biomaterials, 2018, 168, 64-75.	5.7	234
12	Increased Gold Nanoparticle Retention in Brain Tumors by <i>in Situ</i> Enzyme-Induced Aggregation. ACS Nano, 2016, 10, 10086-10098.	7.3	229
13	Development and application of hyaluronic acid in tumor targeting drug delivery. Acta Pharmaceutica Sinica B, 2019, 9, 1099-1112.	5.7	211
14	Paclitaxel loaded liposomes decorated with a multifunctional tandem peptide for glioma targeting. Biomaterials, 2014, 35, 4835-4847.	5.7	210
15	Theranostic size-reducible and no donor conjugated gold nanocluster fabricated hyaluronic acid nanoparticle with optimal size for combinational treatment of breast cancer and lung metastasis. Journal of Controlled Release, 2018, 278, 127-139.	4.8	200
16	Nanoparticles for modulating tumor microenvironment to improve drug delivery and tumor therapy. Pharmacological Research, 2017, 126, 97-108.	3.1	181
17	The impact of protein corona on the behavior and targeting capability of nanoparticle-based delivery system. International Journal of Pharmaceutics, 2018, 552, 328-339.	2.6	178
18	Matrix metalloproteinase triggered size-shrinkable gelatin-gold fabricated nanoparticles for tumor microenvironment sensitive penetration and diagnosis of glioma. Nanoscale, 2015, 7, 9487-9496.	2.8	156

#	Article	IF	CITATIONS
19	Sequentially responsive biomimetic nanoparticles with optimal size in combination with checkpoint blockade for cascade synergetic treatment of breast cancer and lung metastasis. Biomaterials, 2019, 217, 119309.	5.7	149
20	Theranostic nanoparticles with tumor-specific enzyme-triggered size reduction and drug release to perform photothermal therapy for breast cancer treatment. Acta Pharmaceutica Sinica B, 2019, 9, 410-420.	5.7	147
21	Targeted Delivery of Nano-Therapeutics for Major Disorders of the Central Nervous System. Pharmaceutical Research, 2013, 30, 2485-2498.	1.7	144
22	Aggregable Nanoparticles-Enabled Chemotherapy and Autophagy Inhibition Combined with Anti-PD-L1 Antibody for Improved Glioma Treatment. Nano Letters, 2019, 19, 8318-8332.	4.5	142
23	Tumorâ€Microenvironmentâ€Responsive Nanomedicine for Enhanced Cancer Immunotherapy. Advanced Science, 2022, 9, e2103836.	5.6	142
24	Synergistic Dual-Ligand Doxorubicin Liposomes Improve Targeting and Therapeutic Efficacy of Brain Glioma in Animals. Molecular Pharmaceutics, 2014, 11, 2346-2357.	2.3	140
25	Nanogel: A Versatile Nano-Delivery System for Biomedical Applications. Pharmaceutics, 2020, 12, 290.	2.0	140
26	Macrophage-mimic shape changeable nanomedicine retained in tumor for multimodal therapy of breast cancer. Journal of Controlled Release, 2020, 321, 589-601.	4.8	135
27	Lactoferrin-Conjugated Biodegradable Polymersome Holding Doxorubicin and Tetrandrine for Chemotherapy of Glioma Rats. Molecular Pharmaceutics, 2010, 7, 1995-2005.	2.3	134
28	Whole-cell SELEX aptamer-functionalised poly(ethyleneglycol)-poly(ε-caprolactone) nanoparticles for enhanced targeted glioblastoma therapy. Biomaterials, 2012, 33, 6264-6272.	5.7	132
29	Angiopep-2 and Activatable Cell-Penetrating Peptide Dual-Functionalized Nanoparticles for Systemic Glioma-Targeting Delivery. Molecular Pharmaceutics, 2014, 11, 2755-2763.	2.3	127
30	The interaction of nanoparticles with plasma proteins and the consequent influence on nanoparticles behavior. Expert Opinion on Drug Delivery, 2014, 11, 409-420.	2.4	126
31	Advances of nanoparticles as drug delivery systems for disease diagnosis and treatment. Chinese Chemical Letters, 2023, 34, 107518.	4.8	124
32	The progress and perspective of nanoparticle-enabled tumor metastasis treatment. Acta Pharmaceutica Sinica B, 2020, 10, 2037-2053.	5.7	119
33	The progress and perspective of strategies to improve tumor penetration of nanomedicines. Chinese Chemical Letters, 2021, 32, 1341-1347.	4.8	118
34	Overcoming the biological barriers in the tumor microenvironment for improving drug delivery and efficacy. Journal of Materials Chemistry B, 2020, 8, 6765-6781.	2.9	112
35	Perspectives on Dual Targeting Delivery Systems for Brain Tumors. Journal of NeuroImmune Pharmacology, 2017, 12, 6-16.	2.1	111
36	Acidâ€Responsive Transferrin Dissociation and GLUT Mediated Exocytosis for Increased Blood–Brain Barrier Transcytosis and Programmed Glioma Targeting Delivery. Advanced Functional Materials, 2018, 28, 1802227.	7.8	111

#	Article	IF	CITATIONS
37	RGD and Interleukin-13 Peptide Functionalized Nanoparticles for Enhanced Glioblastoma Cells and Neovasculature Dual Targeting Delivery and Elevated Tumor Penetration. Molecular Pharmaceutics, 2014, 11, 1042-1052.	2.3	109
38	Advances in aggregatable nanoparticles for tumor-targeted drug delivery. Chinese Chemical Letters, 2020, 31, 1366-1374.	4.8	105
39	A cascade targeting strategy for brain neuroglial cells employing nanoparticles modified with angiopep-2 peptide and EGFP-EGF1 protein. Biomaterials, 2011, 32, 8669-8675.	5.7	101
40	A Novel Strategy through Combining iRGD Peptide with Tumor-Microenvironment-Responsive and Multistage Nanoparticles for Deep Tumor Penetration. ACS Applied Materials & Interfaces, 2015, 7, 27458-27466.	4.0	101
41	Enhanced Intracellular Delivery and Chemotherapy for Glioma Rats by Transferrin-Conjugated Biodegradable Polymersomes Loaded with Doxorubicin. Bioconjugate Chemistry, 2011, 22, 1171-1180.	1.8	100
42	Coadministration of iRGD with Multistage Responsive Nanoparticles Enhanced Tumor Targeting and Penetration Abilities for Breast Cancer Therapy. ACS Applied Materials & Interfaces, 2018, 10, 22571-22579.	4.0	99
43	Phagocyte-membrane-coated and laser-responsive nanoparticles control primary and metastatic cancer by inducing anti-tumor immunity. Biomaterials, 2020, 255, 120159.	5.7	99
44	High Tumor Penetration of Paclitaxel Loaded pH Sensitive Cleavable Liposomes by Depletion of Tumor Collagen I in Breast Cancer. ACS Applied Materials & Interfaces, 2015, 7, 9691-9701.	4.0	98
45	Rethinking CRITID Procedure of Brain Targeting Drug Delivery: Circulation, Blood Brain Barrier Recognition, Intracellular Transport, Diseased Cell Targeting, Internalization, and Drug Release. Advanced Science, 2021, 8, 2004025.	5.6	96
46	A pH-responsive cell-penetrating peptide-modified liposomes with active recognizing of integrin αvβ3 for the treatment of melanoma. Journal of Controlled Release, 2015, 217, 138-150.	4.8	95
47	A dual strategy to improve the penetration and treatment of breast cancer by combining shrinking nanoparticles with collagen depletion by losartan. Acta Biomaterialia, 2016, 31, 186-196.	4.1	95
48	A tumor-to-lymph procedure navigated versatile gel system for combinatorial therapy against tumor recurrence and metastasis. Science Advances, 2020, 6, .	4.7	95
49	Influence of ligands property and particle size of gold nanoparticles on the protein adsorption and corresponding targeting ability. International Journal of Pharmaceutics, 2018, 538, 105-111.	2.6	94
50	A simple one-step method to prepare fluorescent carbon dots and their potential application in non-invasive glioma imaging. Nanoscale, 2014, 6, 10040-10047.	2.8	92
51	Tumor Microenvironmentâ€Responsive Dual Drug Dimer‣oaded PEGylated Bilirubin Nanoparticles for Improved Drug Delivery and Enhanced Immuneâ€Chemotherapy of Breast Cancer. Advanced Functional Materials, 2019, 29, 1901896.	7.8	92
52	Increased tumor targeted delivery using a multistage liposome system functionalized with RGD, TAT and cleavable PEG. International Journal of Pharmaceutics, 2014, 468, 26-38.	2.6	91
53	Dual Receptor Recognizing Cell Penetrating Peptide for Selective Targeting, Efficient Intratumoral Diffusion and Synthesized Anti-Glioma Therapy. Theranostics, 2016, 6, 177-191.	4.6	91
54	Ligand Size and Conformation Affect the Behavior of Nanoparticles Coated with in Vitro and in Vivo Protein Corona. ACS Applied Materials & Interfaces, 2018, 10, 9094-9103.	4.0	91

#	Article	IF	CITATIONS
55	The protein corona hampers the transcytosis of transferrin-modified nanoparticles through blood–brain barrier and attenuates their targeting ability to brain tumor. Biomaterials, 2021, 274, 120888.	5.7	90
56	Metformin Mediated PDâ€L1 Downregulation in Combination with Photodynamicâ€Immunotherapy for Treatment of Breast Cancer. Advanced Functional Materials, 2021, 31, 2007149.	7.8	89
57	Metal-organic framework-based nanomaterials for biomedical applications. Chinese Chemical Letters, 2020, 31, 1060-1070.	4.8	88
58	Tumor cells and neovasculature dual targeting delivery for glioblastoma treatment. Biomaterials, 2014, 35, 2374-2382.	5.7	86
59	Ligand-Mediated and Enzyme-Directed Precise Targeting and Retention for the Enhanced Treatment of Glioblastoma. ACS Applied Materials & Interfaces, 2017, 9, 20348-20360.	4.0	85
60	Carrier-free nanodrugs with efficient drug delivery and release for cancer therapy: From intrinsic physicochemical properties to external modification. Bioactive Materials, 2022, 8, 220-240.	8.6	84
61	A combinational chemo-immune therapy using an enzyme-sensitive nanoplatform for dual-drug delivery to specific sites by cascade targeting. Science Advances, 2021, 7, .	4.7	81
62	D-T7 Peptide-Modified PEGylated Bilirubin Nanoparticles Loaded with Cediranib and Paclitaxel for Antiangiogenesis and Chemotherapy of Glioma. ACS Applied Materials & Interfaces, 2019, 11, 176-186.	4.0	79
63	Harnessing carbon monoxide-releasing platforms for cancer therapy. Biomaterials, 2020, 255, 120193.	5.7	78
64	Study and evaluation of mechanisms of dual targeting drug delivery system with tumor microenvironment assays compared with normal assays. Acta Biomaterialia, 2014, 10, 858-867.	4.1	77
65	Cell-penetrating Peptide-based Intelligent Liposomal Systems for Enhanced Drug Delivery. Current Pharmaceutical Biotechnology, 2014, 15, 210-219.	0.9	77
66	Linear Chimeric Triblock Molecules Selfâ€Assembled Micelles with Controllably Transformable Property to Enhance Tumor Retention for Chemoâ€Photodynamic Therapy of Breast Cancer. Advanced Functional Materials, 2019, 29, 1808462.	7.8	76
67	Self-Assembled Polymersomes Conjugated with Lactoferrin as Novel Drug Carrier for Brain Delivery. Pharmaceutical Research, 2012, 29, 83-96.	1.7	73
68	Selfâ€Delivered Supramolecular Nanomedicine with Transformable Shape for Ferroceneâ€Amplified Photodynamic Therapy of Breast Cancer and Bone Metastases. Advanced Functional Materials, 2021, 31, 2104645.	7.8	73
69	Endo/Lysosomeâ€Escapable Delivery Depot for Improving BBB Transcytosis and Neuron Targeted Therapy of Alzheimer's Disease. Advanced Functional Materials, 2020, 30, 1909999.	7.8	71
70	Brain delivery and cellular internalization mechanisms for transferrin conjugated biodegradable polymersomes. International Journal of Pharmaceutics, 2011, 415, 284-292.	2.6	70
71	Integrin-mediated active tumor targeting and tumor microenvironment response dendrimer-gelatin nanoparticles for drug delivery and tumor treatment. International Journal of Pharmaceutics, 2015, 496, 1057-1068.	2.6	70
72	Glioma-homing peptide with a cell-penetrating effect for targeting delivery with enhanced glioma localization, penetration and suppression of glioma growth. Journal of Controlled Release, 2013, 172, 921-928.	4.8	69

#	Article	IF	CITATIONS
73	Simultaneous delivery of therapeutic antagomirs with paclitaxel for the management of metastatic tumors by a pH-responsive anti-microbial peptide-mediated liposomal delivery system. Journal of Controlled Release, 2015, 197, 208-218.	4.8	67
74	Enhanced Glioma Targeting and Penetration by Dual-Targeting Liposome Co-modified with T7 and TAT. Journal of Pharmaceutical Sciences, 2014, 103, 3891-3901.	1.6	66
75	Antitumor and Antimetastasis Activities of Heparin-based Micelle Served As Both Carrier and Drug. ACS Applied Materials & Interfaces, 2016, 8, 9577-9589.	4.0	66
76	Co-delivery of doxorubicin and P-gp inhibitor by a reduction-sensitive liposome to overcome multidrug resistance, enhance anti-tumor efficiency and reduce toxicity. Drug Delivery, 2016, 23, 1130-1143.	2.5	66
77	Normalizing Tumor Vessels To Increase the Enzyme-Induced Retention and Targeting of Gold Nanoparticle for Breast Cancer Imaging and Treatment. Molecular Pharmaceutics, 2017, 14, 3489-3498.	2.3	66
78	Multifunctional Tandem Peptide Modified Paclitaxel-Loaded Liposomes for the Treatment of Vasculogenic Mimicry and Cancer Stem Cells in Malignant Glioma. ACS Applied Materials & Interfaces, 2015, 7, 16792-16801.	4.0	64
79	Significantly enhanced tumor cellular and lysosomal hydroxychloroquine delivery by smart liposomes for optimal autophagy inhibition and improved antitumor efficiency with liposomal doxorubicin. Autophagy, 2016, 12, 949-962.	4.3	62
80	GSH-responsive SN38 dimer-loaded shape-transformable nanoparticles with iRGD for enhancing chemo-photodynamic therapy. Acta Pharmaceutica Sinica B, 2020, 10, 2348-2361.	5.7	61
81	Shaping Tumor Microenvironment for Improving Nanoparticle Delivery. Current Drug Metabolism, 2016, 17, 731-736.	0.7	60
82	Liposomes Combined an Integrin αvβ3-Specific Vector with pH-Responsible Cell-Penetrating Property for Highly Effective Antiglioma Therapy through the Blood–Brain Barrier. ACS Applied Materials & Interfaces, 2015, 7, 21442-21454.	4.0	58
83	Targeted delivery of transferrin and TAT co-modified liposomes encapsulating both paclitaxel and doxorubicin for melanoma. Drug Delivery, 2016, 23, 1171-1183.	2.5	57
84	Shape Transformable Strategies for Drug Delivery. Advanced Functional Materials, 2021, 31, 2009765.	7.8	57
85	Peptide mediated active targeting and intelligent particle size reduction-mediated enhanced penetrating of fabricated nanoparticles for triple-negative breast cancer treatment. Oncotarget, 2015, 6, 41258-41274.	0.8	57
86	Tumor homing cell penetrating peptide decorated nanoparticles used for enhancing tumor targeting delivery and therapy. International Journal of Pharmaceutics, 2015, 478, 240-250.	2.6	56
87	Enhanced gene delivery efficiency of cationic liposomes coated with PEGylated hyaluronic acid for anti P-glycoprotein siRNA: A potential candidate for overcoming multi-drug resistance. International Journal of Pharmaceutics, 2014, 477, 590-600.	2.6	55
88	Furin-instructed aggregated gold nanoparticles for re-educating tumor associated macrophages and overcoming breast cancer chemoresistance. Biomaterials, 2021, 275, 120891.	5.7	54
89	Anti-glioma effect and safety of docetaxel-loaded nanoemulsion. Archives of Pharmacal Research, 2012, 35, 333-341.	2.7	53
90	A simple one-step method for preparation of fluorescent carbon nanospheres and the potential application in cell organelles imaging. Journal of Colloid and Interface Science, 2014, 422, 25-29.	5.0	53

#	Article	IF	CITATIONS
91	Nanovaccineâ€Based Strategies to Overcome Challenges in the Whole Vaccination Cascade for Tumor Immunotherapy. Small, 2021, 17, e2006000.	5.2	53
92	Effect of lactoferrin- and transferrin-conjugated polymersomes in brain targeting: in vitro and in vivo evaluations. Acta Pharmacologica Sinica, 2010, 31, 237-243.	2.8	51
93	Selfâ€Propelled Micro/Nanomotors for Tumor Targeting Delivery and Therapy. Advanced Healthcare Materials, 2021, 10, e2001212.	3.9	51
94	The use of myristic acid as a ligand of polyethylenimine/DNA nanoparticles for targeted gene therapy of glioblastoma. Nanotechnology, 2011, 22, 435101.	1.3	50
95	Arginine-Glycine-Aspartic Acid-Modified Lipid-Polymer Hybrid Nanoparticles for Docetaxel Delivery in Glioblastoma Multiforme. Journal of Biomedical Nanotechnology, 2015, 11, 382-391.	0.5	50
96	Biocompatible polydopamine-encapsulated gadolinium-loaded carbon nanotubes for MRI and color mapping guided photothermal dissection of tumor metastasis. Carbon, 2017, 112, 53-62.	5.4	50
97	Enhanced Cancer-targeted Drug Delivery Using Precoated Nanoparticles. Nano Letters, 2020, 20, 8903-8911.	4.5	50
98	PEGylated Hyaluronic Acid-Modified Liposomal Delivery System with Anti-Î ³ -Glutamylcyclotransferase siRNA for Drug-Resistant MCF-7 Breast Cancer Therapy. Journal of Pharmaceutical Sciences, 2015, 104, 476-484.	1.6	48
99	A nanocleaner specifically penetrates the blood‒brain barrier at lesions to clean toxic proteins and regulate inflammation in Alzheimer's disease. Acta Pharmaceutica Sinica B, 2021, 11, 4032-4044.	5.7	47
100	Self-propelled nanomotor reconstructs tumor microenvironment through synergistic hypoxia alleviation and glycolysis inhibition for promoted anti-metastasis. Acta Pharmaceutica Sinica B, 2021, 11, 2924-2936.	5.7	47
101	A roadmap to pulmonary delivery strategies for the treatment of infectious lung diseases. Journal of Nanobiotechnology, 2022, 20, 101.	4.2	47
102	Membrane-Associated Heat Shock Proteins in Oncology: From Basic Research to New Theranostic Targets. Cells, 2020, 9, 1263.	1.8	46
103	Fluorescent Carbonaceous Nanodots for Noninvasive Glioma Imaging after Angiopep-2 Decoration. Bioconjugate Chemistry, 2014, 25, 2252-2259.	1.8	45
104	Dual-functionalized liposomal delivery system for solid tumors based on RGD and a pH-responsive antimicrobial peptide. Scientific Reports, 2016, 6, 19800.	1.6	45
105	The development and progress of nanomedicine for esophageal cancer diagnosis and treatment. Seminars in Cancer Biology, 2022, 86, 873-885.	4.3	44
106	PEGylated Fluorescent Carbon Nanoparticles for Noninvasive Heart Imaging. Bioconjugate Chemistry, 2014, 25, 1061-1068.	1.8	43
107	The application of nitric oxide delivery in nanoparticle-based tumor targeting drug delivery and treatment. Asian Journal of Pharmaceutical Sciences, 2019, 14, 380-390.	4.3	43
108	pHâ€Triggered Sizeâ€Tunable Silver Nanoparticles: Targeted Aggregation for Effective Bacterial Infection Therapy. Small, 2022, 18, e2200915.	5.2	43

#	Article	IF	CITATIONS
109	Enhanced antitumor and anti-metastasis efficiency via combined treatment with CXCR4 antagonist and liposomal doxorubicin. Journal of Controlled Release, 2014, 196, 324-331.	4.8	42
110	Incorporation of lapatinib into core–shell nanoparticles improves both the solubility and anti-glioma effects of the drug. International Journal of Pharmaceutics, 2014, 461, 478-488.	2.6	41
111	Angiopep-2 and activatable cell penetrating peptide dual modified nanoparticles for enhanced tumor targeting and penetrating. International Journal of Pharmaceutics, 2014, 474, 95-102.	2.6	40
112	Losartan loaded liposomes improve the antitumor efficacy of liposomal paclitaxel modified with pH sensitive peptides by inhibition of collagen in breast cancer. Pharmaceutical Development and Technology, 2018, 23, 13-21.	1.1	40
113	Dual-responsive nanoparticles with transformable shape and reversible charge for amplified chemo-photodynamic therapy of breast cancer. Acta Pharmaceutica Sinica B, 2022, 12, 3354-3366.	5.7	40
114	Advances of nanomedicines in breast cancer metastasis treatment targeting different metastatic stages. Advanced Drug Delivery Reviews, 2021, 178, 113909.	6.6	39
115	The impact of protein corona on the biological behavior of targeting nanomedicines. International Journal of Pharmaceutics, 2022, 614, 121458.	2.6	39
116	Progress on the diagnosis and evaluation of brain tumors. Cancer Imaging, 2013, 13, 466-481.	1.2	37
117	Multistage drug delivery system based on microenvironment-responsive dendrimer–gelatin nanoparticles for deep tumor penetration. RSC Advances, 2015, 5, 85933-85937.	1.7	37
118	Taming Cell Penetrating Peptides: Never Too Old To Teach Old Dogs New Tricks. Molecular Pharmaceutics, 2015, 12, 3105-3118.	2.3	36
119	Intelligent lesion blood–brain barrier targeting nano-missiles for Alzheimer's disease treatment by anti-neuroinflammation and neuroprotection. Acta Pharmaceutica Sinica B, 2022, 12, 1987-1999.	5.7	35
120	Co-delivery of photosensitizer and diclofenac through sequentially responsive bilirubin nanocarriers for combating hypoxic tumors. Acta Pharmaceutica Sinica B, 2022, 12, 1416-1431.	5.7	35
121	Incorporation of lapatinib into lipoprotein-like nanoparticles with enhanced water solubility and anti-tumor effect in breast cancer. Nanomedicine, 2013, 8, 1429-1442.	1.7	33
122	Targeting delivery and deep penetration using multistage nanoparticles for triple-negative breast cancer. RSC Advances, 2015, 5, 64303-64317.	1.7	33
123	Internalization and subcellular fate of aptamer and peptide dual-functioned nanoparticles. Journal of Drug Targeting, 2014, 22, 450-459.	2.1	32
124	Efficient siRNA transfer to knockdown a placenta specific lncRNA using RGD-modified nano-liposome: A new preeclampsia-like mouse model. International Journal of Pharmaceutics, 2018, 546, 115-124.	2.6	32
125	In vitro and in vivo intracellular distribution and anti-glioblastoma effects of docetaxel-loaded nanoparticles functioned with IL-13 peptide. International Journal of Pharmaceutics, 2014, 466, 8-17.	2.6	30
126	Nanoparticles in precision medicine for ovarian cancer: From chemotherapy to immunotherapy. International Journal of Pharmaceutics, 2020, 591, 119986.	2.6	30

#	Article	IF	CITATIONS
127	Intranasal Delivery of BACE1 siRNA and Rapamycin by Dual Targets Modified Nanoparticles for Alzheimer's Disease Therapy. Small, 2022, 18, .	5.2	30
128	Lapatinib-incorporated lipoprotein-like nanoparticles: preparation and a proposed breast cancer-targeting mechanism. Acta Pharmacologica Sinica, 2014, 35, 846-852.	2.8	29
129	A novel antitumour strategy using bidirectional autophagic vesicles accumulation via initiative induction and the terminal restraint of autophagic flux. Journal of Controlled Release, 2015, 199, 17-28.	4.8	28
130	Inducing Optimal Antitumor Immune Response through Coadministering iRGD with Pirarubicin Loaded Nanostructured Lipid Carriers for Breast Cancer Therapy. Molecular Pharmaceutics, 2017, 14, 296-309.	2.3	28
131	Acidâ€Responsive Aggregated Gold Nanoparticles for Radiosensitization and Synergistic Chemoradiotherapy in the Treatment of Esophageal Cancer. Small, 2022, 18, e2200115.	5.2	28
132	Preparation, Characterization and Anti-Glioma Effects of Docetaxel-Incorporated Albumin-Lipid Nanoparticles. Journal of Biomedical Nanotechnology, 2015, 11, 2137-2147.	0.5	27
133	Melanin-originated carbonaceous dots for triple negative breast cancer diagnosis by fluorescence and photoacoustic dual-mode imaging. Journal of Colloid and Interface Science, 2017, 497, 226-232.	5.0	27
134	Synergistic Combination of Doxorubicin and Paclitaxel Delivered by Blood Brain Barrier and Glioma Cells Dual Targeting Liposomes for Chemotherapy of Brain Glioma. Current Pharmaceutical Biotechnology, 2016, 17, 636-650.	0.9	26
135	Modulating the blood–brain tumor barrier for improving drug delivery efficiency and efficacy. View, 2022, 3, .	2.7	26
136	Advanced Biomaterials for Cellâ€ S pecific Modulation and Restore of Cancer Immunotherapy. Advanced Science, 2022, 9, e2200027.	5.6	26
137	The construction of inÂvitro nasal cavity-mimic M-cell model, design of M cell-targeting nanoparticles and evaluation of mucosal vaccination by nasal administration. Acta Pharmaceutica Sinica B, 2020, 10, 1094-1105.	5.7	25
138	Rubik-like magnetic nanoassemblies as an efficient drug multifunctional carrier for cancer theranostics. Journal of Controlled Release, 2013, 172, 993-1001.	4.8	23
139	A detachable coating of cholesterol-anchored PEC improves tumor targeting of cell-penetrating peptide-modified liposomes. Acta Pharmaceutica Sinica B, 2014, 4, 67-73.	5.7	23
140	Suppression for lung metastasis by depletion of collagen I and lysyl oxidase via losartan assisted with paclitaxel-loaded pH-sensitive liposomes in breast cancer. Drug Delivery, 2016, 23, 2970-2979.	2.5	23
141	Matrix metalloproteases-responsive nanomaterials for tumor targeting diagnosis and treatment. Journal of Microencapsulation, 2017, 34, 440-453.	1.2	23
142	Unmasking CSF protein corona: Effect on targeting capacity of nanoparticles. Journal of Controlled Release, 2021, 333, 352-361.	4.8	23
143	A pH-sensitive supramolecular nanosystem with chlorin e6 and triptolide co-delivery for chemo-photodynamic combination therapy. Asian Journal of Pharmaceutical Sciences, 2022, 17, 206-218.	4.3	23
144	Liposomes co-modified with cholesterol anchored cleavable PEG and octaarginines for tumor targeted drug delivery. Journal of Drug Targeting, 2014, 22, 313-326.	2.1	21

#	Article	IF	CITATIONS
145	A simple one-step synthesis of melanin-originated red shift emissive carbonaceous dots for bioimaging. Journal of Colloid and Interface Science, 2016, 480, 85-90.	5.0	21
146	Nanoformulations of small molecule protein tyrosine kinases inhibitors potentiate targeted cancer therapy. International Journal of Pharmaceutics, 2020, 573, 118785.	2.6	21
147	Intelligent Size-Changeable Nanoparticles for Enhanced Tumor Accumulation and Deep Penetration. ACS Applied Bio Materials, 2020, 3, 5455-5462.	2.3	21
148	Polyethylene glycol–polylactic acid nanoparticles modified with cysteine–arginine–glutamic acid–lysine–alanine fibrin-homing peptide for glioblastoma therapy by enhanced retention effect. International Journal of Nanomedicine, 2014, 9, 5261.	3.3	20
149	Pretreatment with chemotherapeutics for enhanced nanoparticles accumulation in tumor: the potential role of G2 cycle retention effect. Scientific Reports, 2014, 4, 4492.	1.6	20
150	Recent Advances in Gold Nanoformulations for Cancer Therapy. Current Drug Metabolism, 2018, 19, 768-780.	0.7	19
151	Development of an anti-microbial peptide-mediated liposomal delivery system: a novel approach towards pH-responsive anti-microbial peptides. Drug Delivery, 2016, 23, 1163-1170.	2.5	18
152	Preparation and biological evaluation of photoluminescent carbonaceous nanospheres. Journal of Colloid and Interface Science, 2014, 429, 77-82.	5.0	17
153	Ultrasound-mediated microbubbles cavitation enhanced chemotherapy of advanced prostate cancer by increasing the permeability of blood-prostate barrier. Translational Oncology, 2021, 14, 101177.	1.7	17
154	Unraveling the Effect of Breast Cancer Patients' Plasma on the Targeting Ability of Folic Acid-Modified Chitosan Nanoparticles. Molecular Pharmaceutics, 2021, 18, 4341-4353.	2.3	17
155	Chondroitin sulfate-based prodrug nanoparticles enhance photodynamic immunotherapy via Golgi apparatus targeting. Acta Biomaterialia, 2022, 146, 357-369.	4.1	17
156	Intracellular delivery mechanism and brain delivery kinetics of biodegradable cationic bovine serum albumin-conjugated polymersomes. International Journal of Nanomedicine, 2012, 7, 3421.	3.3	16
157	Fluorescent carbonaceous nanospheres as biological probe for noninvasive brain imaging. Journal of Colloid and Interface Science, 2014, 436, 227-233.	5.0	16
158	In vitro and in vivo toxicology of bare and PEGylated fluorescent carbonaceous nanodots in mice and zebrafish: the potential relationship with autophagy. RSC Advances, 2015, 5, 38547-38557.	1.7	16
159	Behavior and anti-glioma effect of lapatinib-incorporated lipoprotein-like nanoparticles. Nanotechnology, 2012, 23, 435101.	1.3	15
160	Utilizing G2/M retention effect to enhance tumor accumulation of active targeting nanoparticles. Scientific Reports, 2016, 6, 27669.	1.6	15
161	A functional nanocarrier that copenetrates extracellular matrix and multiple layers of tumor cells for sequential and deep tumor autophagy inhibitor and chemotherapeutic delivery. Autophagy, 2017, 13, 359-370.	4.3	15
162	Noninvasive <l>ln</l> <l>Vivo</l> Diagnosis of Brain Glioma Using RGD-Decorated Fluorescent Carbonaceous Nanospheres. Journal of Biomedical Nanotechnology, 2015, 11, 2148-2157.	0.5	14

#	Article	IF	CITATIONS
163	Integrin αvβ3 targeting activity study of different retro-inverso sequences of RGD and their potentiality in the designing of tumor targeting peptides. Amino Acids, 2015, 47, 2533-2539.	1.2	14
164	Acidâ€Responsive Dualâ€Targeted Nanoparticles Encapsulated Aspirin Rescue the Immune Activation and Phenotype in Autism Spectrum Disorder. Advanced Science, 2022, 9, e2104286.	5.6	14
165	Prodrug strategy for enhanced therapy of central nervous system disease. Chemical Communications, 2021, 57, 8842-8855.	2.2	13
166	Glymphatic System and Subsidiary Pathways Drive Nanoparticles Away from the Brain. Research, 2022, 2022, 9847612.	2.8	13
167	Glioma cell-targeting doxorubicin delivery and redox-responsive release using angiopep-2 decorated carbonaceous nanodots. RSC Advances, 2015, 5, 57045-57049.	1.7	12
168	Non-invasive imaging of breast cancer using RGDyK functionalized fluorescent carbonaceous nanospheres. RSC Advances, 2015, 5, 25428-25436.	1.7	12
169	Cabazitaxel and indocyanine green co-delivery tumor-targeting nanoparticle for improved antitumor efficacy and minimized drug toxicity. Journal of Drug Targeting, 2017, 25, 179-187.	2.1	12
170	Changes in target ability of nanoparticles due to protein corona composition and disease state. Asian Journal of Pharmaceutical Sciences, 2022, 17, 401-411.	4.3	11
171	When imaging meets size-transformable nanosystems. Advanced Drug Delivery Reviews, 2022, 183, 114176.	6.6	11
172	Advance cardiac nanomedicine by targeting the pathophysiological characteristics of heart failure. Journal of Controlled Release, 2021, 337, 494-504.	4.8	10
173	Polyethylene glycol modification decreases the cardiac toxicity of carbonaceous dots in mouse and zebrafish models. Acta Pharmacologica Sinica, 2015, 36, 1349-1355.	2.8	9
174	Glioma Targeting and Anti-glioma Effect of Interleukin 13 Peptide and RGD Peptide Dual Functionalized Nanoparticles. Current Pharmaceutical Biotechnology, 2014, 14, 1118-1126.	0.9	8
175	A cleavable self-delivery nanoparticle for tumor photo-immunotherapy. Asian Journal of Pharmaceutical Sciences, 2021, 16, 133-135.	4.3	5
176	In vivo behavior and Safety of Lapatinib-Incorporated Lipid Nanoparticles. Current Pharmaceutical Biotechnology, 2014, 14, 1062-1071.	0.9	5
177	Perspective on brain targeting drug delivery systems. , 2019, , 455-467.		4
178	Cancer bone metastases and nanotechnology-based treatment strategies. Expert Opinion on Drug Delivery, 2022, 19, 1217-1232.	2.4	3
179	Perspective on Strategies to Reduce the Neurotoxicity of Nanomaterials and Nanomedicines. , 2017, , 331-336.		2
180	The Medical Applications of Nanomaterials in the Central Nervous System. , 2017, , 1-31.		2

#	Article	IF	CITATIONS
181	Encapsulation of cationic peptides into polymersomes throughin situgelatinization. Journal of Microencapsulation, 2011, 28, 465-471.	1.2	1
182	Novel Nanoparticles for Tumor Targeting Drug Delivery. Current Drug Metabolism, 2018, 19, 722-722.	0.7	1
183	Editorial of Special Issue on Tumor Microenvironment and Drug Delivery. Acta Pharmaceutica Sinica B, 2020, 10, 2016-2017.	5.7	1
184	Editorial (Thematic Issue: Nanoparticles for Brain and Tumor Targeting Delivery). Current Drug Metabolism, 2016, 17, 730-730.	0.7	0