
Jorge Arreola

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4959376/publications.pdf Version: 2024-02-01

LODGE ADDENIA

#	Article	IF	CITATIONS
1	Oleic acid blocks the calcium-activated chloride channel TMEM16A/ANO1. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2022, 1867, 159134.	2.4	1
2	Gating and anion selectivity are reciprocally regulated in TMEM16A (ANO1). Journal of General Physiology, 2022, 154, .	1.9	3
3	Function and Regulation of the Calcium-Activated Chloride Channel Anoctamin 1 (TMEM16A). Handbook of Experimental Pharmacology, 2022, , 101-151.	1.8	3
4	Electro-steric opening of the clc-2 chloride channel gate. Scientific Reports, 2021, 11, 13127.	3.3	5
5	Voltage-Dependent Protonation of the Calcium Pocket Enable Activation of the Calcium-Activated Chloride Channel Anoctamin-1 (TMEM16A). Scientific Reports, 2020, 10, 6644.	3.3	19
6	Regulation of the Ca2+-activated chloride channel Anoctamin-1 (TMEM16A) by Ca2+-induced interaction with FKBP12 and calcineurin. Cell Calcium, 2020, 89, 102211.	2.4	5
7	Wasted TMEM16A channels are rescued by phosphatidylinositol 4,5-bisphosphate. Cell Calcium, 2019, 84, 102103.	2.4	18
8	Phosphatidylinositol 4,5-bisphosphate, cholesterol, and fatty acids modulate the calcium-activated chloride channel TMEM16A (ANO1). Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2018, 1863, 299-312.	2.4	56
9	Extracellular protons enable activation of the calciumâ€dependent chloride channel TMEM16A. Journal of Physiology, 2017, 595, 1515-1531.	2.9	27
10	P2X7 from j774 murine macrophages acts as a scavenger receptor for bacteria but not yeast. Biochemical and Biophysical Research Communications, 2016, 481, 19-24.	2.1	11
11	Revealing the activation pathway for TMEM16A chloride channels from macroscopic currents and kinetic models. Pflugers Archiv European Journal of Physiology, 2016, 468, 1241-1257.	2.8	26
12	Gating the glutamate gate of CLC-2 chloride channel by pore occupancy. Journal of General Physiology, 2016, 147, 25-37.	1.9	29
13	Extracellular Chloride Regulates TMEM16A Gating. Biophysical Journal, 2015, 108, 441a.	0.5	0
14	Gating modes of calciumâ€activated chloride channels TMEM16A and TMEM16B. Journal of Physiology, 2015, 593, 5283-5298.	2.9	35
15	The EPA2 adhesin encoding gene is responsive to oxidative stress in the opportunistic fungal pathogen Candida glabrata. Current Genetics, 2015, 61, 529-544.	1.7	23
16	The P2X7/P2X4 interaction shapes the purinergic response in murine macrophages. Biochemical and Biophysical Research Communications, 2015, 467, 484-490.	2.1	50
17	Oxidative stress induced by P2X7 receptor stimulation in murine macrophages is mediated by c-Src/Pyk2 and ERK1/2. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 4650-4659.	2.4	40
18	Atomic charges of Cl ^{â^'} ions confined in a model <i>Escherichia coli</i> ClCâ^'Cl ^{â^'} /H ⁺ ion exchanger: a density functional theory study. Molecular Physics, 2013, 111, 3218-3233.	1.7	5

Jorge Arreola

#	Article	IF	CITATIONS
19	Voltage-Dependent Gating of ClC-2 Chloride Channel. Biophysical Journal, 2012, 102, 548a.	0.5	0
20	Sequential interaction of chloride and proton ions with the fast gate steer the voltageâ€dependent gating in ClCâ€2 chloride channels. Journal of Physiology, 2012, 590, 4239-4253.	2.9	19
21	Voltage- and calcium-dependent gating of TMEM16A/Ano1 chloride channels are physically coupled by the first intracellular loop. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8891-8896.	7.1	191
22	Control of volume-sensitive chloride channel inactivation by the coupled action of intracellular chloride and extracellular protons. Pflugers Archiv European Journal of Physiology, 2010, 460, 633-644.	2.8	19
23	Human neutrophils do not express purinergic P2X7 receptors. Purinergic Signalling, 2010, 6, 297-306.	2.2	22
24	Permeant anions contribute to voltage dependence of ClCâ€2 chloride channel by interacting with the protopore gate. Journal of Physiology, 2010, 588, 2545-2556.	2.9	22
25	The Extracellular K+ Concentration Dependence of Outward Currents through Kir2.1 Channels Is Regulated by Extracellular Na+ and Ca2+. Journal of Biological Chemistry, 2010, 285, 23115-23125.	3.4	13
26	Simulating complex ion channel kinetics with IonChannelLab. Channels, 2010, 4, 422-428.	2.8	30
27	Stimulation of P2X7 receptors causes Ca2+―and PKC―mediated reactive oxygen species production in murine macrophages. FASEB Journal, 2010, 24, lb587.	0.5	0
28	Functional interactions between P2X ₄ and P2X ₇ receptors from mouse salivary epithelia. Journal of Physiology, 2009, 587, 2887-2901.	2.9	53
29	Lack of coupling between membrane stretching and pannexin-1 hemichannels. Biochemical and Biophysical Research Communications, 2009, 380, 50-53.	2.1	20
30	Ab Initio Calculations Of Structural Rearrangements and Energetic of Glutamate148 Site Chain of the Ec-ClC H+/Clâ ^{~?} Exchanger. Biophysical Journal, 2009, 96, 470a-471a.	0.5	0
31	Na+ Modulates Anion Permeation and Block of P2X7 Receptors from Mouse Parotid Glands. Journal of Membrane Biology, 2008, 223, 73-85.	2.1	16
32	Gating and trafficking of ClCâ€2 chloride channel without cystathionine βâ€synthase domains. Journal of Physiology, 2008, 586, 5289-5289.	2.9	2
33	Inhibition of Na+/H+exchanger enhances low pH-induced L-selectin shedding and β2-integrin surface expression in human neutrophils. American Journal of Physiology - Cell Physiology, 2008, 295, C1454-C1463.	4.6	14
34	Functional and molecular characterization of the fluid secretion mechanism in human parotid acinar cells. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 292, R2380-R2390.	1.8	43
35	Functional Properties of Ca2+â€Dependent Clâ^' Channels and Bestrophins: Do They Correlate?. Advances in Molecular and Cell Biology, 2006, 38, 181-197.	0.1	1
36	CALCIUM-ACTIVATED CHLORIDE CHANNELS. Annual Review of Physiology, 2005, 67, 719-758.	13.1	560

JORGE ARREOLA

#	Article	IF	CITATIONS
37	Quantitative Analysis of the Voltage-dependent Gating of Mouse Parotid ClC-2 Chloride Channel. Journal of General Physiology, 2005, 126, 591-603.	1.9	49
38	Volume-Sensitive Chloride Channels Do Not Mediate Activation-Induced Chloride Efflux in Human Neutrophils. Journal of Immunology, 2004, 172, 6988-6993.	0.8	10
39	Novel outwardly rectifying anion conductance in Xenopus oocytes. Pflugers Archiv European Journal of Physiology, 2004, 449, 271-7.	2.8	7
40	Permeant Anions Control Gating of Calcium-dependent Chloride Channels. Journal of Membrane Biology, 2004, 198, 125-133.	2.1	34
41	Regulation of Ca2+-activated chloride channels by cAMP and CFTR in parotid acinar cells. Biochemical and Biophysical Research Communications, 2004, 316, 612-617.	2.1	24
42	A novel chloride conductance activated by extracellular ATP in mouse parotid acinar cells. Journal of Physiology, 2003, 547, 197-208.	2.9	32
43	Loss of Hyperpolarization-activated Clâ^ Current in Salivary Acinar Cells from Clcn2 Knockout Mice. Journal of Biological Chemistry, 2002, 277, 23604-23611.	3.4	104
44	Ca2+-activated Clâ^' currents in salivary and lacrimal glands. Current Topics in Membranes, 2002, , 209-230.	0.9	10
45	Cytosolic Ca2+and Ca2+â€activated Clâ^current dynamics: insights from two functionally distinct mouse exocrine cells. Journal of Physiology, 2002, 540, 469-484.	2.9	75
46	Conformationâ€dependent regulation of inward rectifier chloride channel gating by extracellular protons. Journal of Physiology, 2002, 541, 103-112.	2.9	56
47	Secretion and cell volume regulation by salivary acinar cells from mice lacking expression of the <i>Clcn3</i> Cl ^{â~²} channel gene. Journal of Physiology, 2002, 545, 207-216.	2.9	95
48	Interaction of Ba2+ with the Pores of the Cloned Inward Rectifier K+ Channels Kir2.1 Expressed in Xenopus Oocytes. Biophysical Journal, 1998, 75, 2313-2322.	0.5	60
49	Nonindependent K+ Movement through the Pore in IRK1 Potassium Channels. Journal of General Physiology, 1998, 112, 475-484.	1.9	32
50	Differences in regulation of Ca ²⁺ -activated Cl ^{â^'} channels in colonic and parotid secretory cells. American Journal of Physiology - Cell Physiology, 1998, 274, C161-C166.	4.6	45
51	Inhibition of Ca2+-dependent Cl? channels from secretory epithelial cells by low internal pH. Journal of Membrane Biology, 1995, 147, 95-104.	2.1	46
52	Inhibition by thiocyanate of muscarinic-induced cytosolic acidification and Ca2+ entry in rat sublingual acini. Archives of Oral Biology, 1995, 40, 111-118.	1.8	11
53	Autonomic modulation of action potential and tension in guinea pig papillary muscles. European Journal of Pharmacology, 1994, 271, 309-317.	3.5	6