
Sacha Noimark

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4957863/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PDMS composites with photostable NIR dyes for multi-modal ultrasound imaging. MRS Advances, 2022, 7, 499-503.	0.9	6
2	Broadband All-Optical Plane-Wave Ultrasound Imaging System Based on a Fabry–Perot Scanner. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68, 1007-1016.	3.0	13
3	Modelling and measurement of laser-generated focused ultrasound: Can interventional transducers achieve therapeutic effects?. Journal of the Acoustical Society of America, 2021, 149, 2732-2742.	1.1	2
4	Freehand and video-rate all-optical ultrasound imaging. Ultrasonics, 2021, 116, 106514.	3.9	10
5	CuInS ₂ Quantum Dot and Polydimethylsiloxane Nanocomposites for Allâ€Optical Ultrasound and Photoacoustic Imaging. Advanced Materials Interfaces, 2021, 8, 2100518.	3.7	13
6	CuInS ₂ Quantum Dot and Polydimethylsiloxane Nanocomposites for Allâ€Optical Ultrasound and Photoacoustic Imaging (Adv. Mater. Interfaces 20/2021). Advanced Materials Interfaces, 2021, 8, 2170114.	3.7	0
7	Direct Model-Based Inversion for Improved Freehand Optical Ultrasound Imaging. , 2021, , .		0
8	TCT CONNECT-373 Optical Ultrasound: A New Imaging Paradigm Allowing Real-Time Visualization of In Situ Fenestration of Aortic Endovascular Grafts During Aneurysm Repair. Journal of the American College of Cardiology, 2020, 76, B160-B161.	2.8	0
9	Optically Generated Ultrasound for Intracoronary Imaging. Frontiers in Cardiovascular Medicine, 2020, 7, 525530.	2.4	5
10	Antibacterial Surfaces with Activity against Antimicrobial Resistant Bacterial Pathogens and Endospores. ACS Infectious Diseases, 2020, 6, 939-946.	3.8	21
11	All-Optical Rotational Ultrasound Imaging. Scientific Reports, 2019, 9, 5576.	3.3	47
12	Haptic Guidance Based on All-Optical Ultrasound Distance Sensing for Safer Minimally Invasive Fetal Surgery. Journal of Medical Robotics Research, 2018, 03, 1841001.	1.2	14
13	Polydimethylsiloxane Composites for Optical Ultrasound Generation and Multimodality Imaging. Advanced Functional Materials, 2018, 28, 1704919.	14.9	81
14	Covalently Attached Antimicrobial Surfaces Using BODIPY: Improving Efficiency and Effectiveness. ACS Applied Materials & amp; Interfaces, 2018, 10, 98-104.	8.0	35
15	Real-Time, Video-Rate and Depth-Resolved Imaging of Radio-Frequency Ablation Using All-Optical Ultrasound. , 2018, , .		4
16	Reconfigurable 1.5D Source Arrays for Improved Elevational Focussing in All-Optical Ultrasound Imaging. , 2018, , .		0
17	Video-rate all-optical ultrasound imaging. Biomedical Optics Express, 2018, 9, 3481.	2.9	25
18	Ultrasensitive plano-concave optical microresonators for ultrasound sensing. Nature Photonics, 2017, 11, 714-719.	31.4	255

SACHA NOIMARK

#	Article	IF	CITATIONS
19	A reconfigurable all-optical ultrasound transducer array for 3D endoscopic imaging. Scientific Reports, 2017, 7, 1208.	3.3	23
20	Through-needle all-optical ultrasound imaging in vivo: a preclinical swine study. Light: Science and Applications, 2017, 6, e17103-e17103.	16.6	90
21	A Light-Activated Antimicrobial Surface Is Active Against Bacterial, Viral and Fungal Organisms. Scientific Reports, 2017, 7, 15298.	3.3	27
22	Optical fiber ultrasound transmitter with electrospun carbon nanotube-polymer composite. Applied Physics Letters, 2017, 110, 223701.	3.3	54
23	Ultrasonic Needle Tracking with a Fibre-Optic Ultrasound Transmitter for Guidance of Minimally Invasive Fetal Surgery. Lecture Notes in Computer Science, 2017, 10434, 637-645.	1.3	14
24	Pencil beam all-optical ultrasound imaging. Biomedical Optics Express, 2016, 7, 3696.	2.9	54
25	Thiol-Capped Gold Nanoparticles Swell-Encapsulated into Polyurethane as Powerful Antibacterial Surfaces Under Dark and Light Conditions. Scientific Reports, 2016, 6, 39272.	3.3	54
26	Enhancing the Antibacterial Activity of Light-Activated Surfaces Containing Crystal Violet and ZnO Nanoparticles: Investigation of Nanoparticle Size, Capping Ligand, and Dopants. ACS Omega, 2016, 1, 334-343.	3.5	41
27	Carbonâ€Nanotube–PDMS Composite Coatings on Optical Fibers for Allâ€Optical Ultrasound Imaging. Advanced Functional Materials, 2016, 26, 8390-8396.	14.9	120
28	Comparative study of singlet oxygen production by photosensitiser dyes encapsulated in silicone: towards rational design of anti-microbial surfaces. Physical Chemistry Chemical Physics, 2016, 18, 28101-28109.	2.8	31
29	Advanced Compositional Analysis of Nanoparticle-polymer Composites Using Direct Fluorescence Imaging. Journal of Visualized Experiments, 2016, , .	0.3	1
30	White light-activated antimicrobial surfaces: effect of nanoparticles type on activity. Journal of Materials Chemistry B, 2016, 4, 2199-2207.	5.8	19
31	Dualâ€Mechanism Antimicrobial Polymer–ZnO Nanoparticle and Crystal Violetâ€Encapsulated Silicone. Advanced Functional Materials, 2015, 25, 1367-1373.	14.9	94
32	Lethal photosensitisation of Staphylococcus aureus and Escherichia coli using crystal violet and zinc oxide-encapsulated polyurethane. Journal of Materials Chemistry B, 2015, 3, 6490-6500.	5.8	43
33	Incorporation of crystal violet, methylene blue and safranin O into a copolymer emulsion; the development of a novel antimicrobial paint. RSC Advances, 2015, 5, 26364-26375.	3.6	17
34	Antimicrobial Surfaces: Dualâ€Mechanism Antimicrobial Polymer–ZnO Nanoparticle and Crystal Violetâ€Encapsulated Silicone (Adv. Funct. Mater. 9/2015). Advanced Functional Materials, 2015, 25, 1366-1366.	14.9	4
35	Potent Antibacterial Activity of Copper Embedded into Silicone and Polyurethane. ACS Applied Materials & Interfaces, 2015, 7, 22807-22813.	8.0	71
36	Functionalised gold and titania nanoparticles and surfaces for use as antimicrobial coatings. Faraday Discussions, 2014, 175, 273-287.	3.2	16

3

SACHA NOIMARK

#	Article	IF	CITATIONS
37	Light-activated antimicrobial surfaces with enhanced efficacy induced by a dark-activated mechanism. Chemical Science, 2014, 5, 2216-2223.	7.4	52
38	Photobactericidal polymers; the incorporation of crystal violet and nanogold into medical grade silicone. RSC Advances, 2013, 3, 18383.	3.6	42
39	of a Novel Light-activated Antimicrobial Coating to Disinfect Computer Keyboards in the Clinical Ward Environment. American Journal of Infection Control, 2013, 41, S35-S36.	2.3	1
40	Shining light on materials — A self-sterilising revolution. Advanced Drug Delivery Reviews, 2013, 65, 570-580.	13.7	83
41	Incorporation of methylene blue and nanogold into polyvinyl chloride catheters; a new approach for light-activated disinfection of surfaces. Journal of Materials Chemistry, 2012, 22, 15388.	6.7	62
42	Silver loaded WO3â^'x/TiO2 composite multifunctional thin films. Thin Solid Films, 2012, 520, 5516-5520.	1.8	15
43	Nanoparticulate silver coated-titania thin films—Photo-oxidative destruction of stearic acid under different light sources and antimicrobial effects under hospital lighting conditions. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 220, 113-123.	3.9	69
44	The role of surfaces in catheter-associated infections. Chemical Society Reviews, 2009, 38, 3435.	38.1	190