Ruogang Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4957661/publications.pdf

Version: 2024-02-01

430874 434195 1,586 37 18 31 citations h-index g-index papers 37 37 37 2599 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Engineering tumor stromal mechanics for improved T cell therapy. Biochimica Et Biophysica Acta - General Subjects, 2022, 1866, 130095.	2.4	7
2	Bioengineered Skeletal Muscle as a Model of Muscle Aging and Regeneration. Tissue Engineering - Part A, 2021, 27, 74-86.	3.1	20
3	Fibrosis on a Chip for Screening of Anti-Fibrosis Drugs. Methods in Molecular Biology, 2021, 2299, 263-274.	0.9	3
4	Force-sensing micropillar arrays for cell mechanics and mechanobiology., 2021,, 23-42.		1
5	Fast Stereolithography Printing of Largeâ€6cale Biocompatible Hydrogel Models. Advanced Healthcare Materials, 2021, 10, e2002103.	7.6	48
6	Mechanosensitive expression of lamellipodin promotes intracellular stiffness, cyclin expression and cell proliferation. Journal of Cell Science, 2021, 134, .	2.0	11
7	Engineered microenvironment for the study of myofibroblast mechanobiology. Wound Repair and Regeneration, 2021, 29, 588-596.	3.0	7
8	Compressive Buckling Fabrication of 3D Cell‣aden Microstructures. Advanced Science, 2021, 8, e2101027.	11.2	2
9	Cyclic Stretching of Fibrotic Microtissue Array for Evaluation of Anti-Fibrosis Drugs. Cellular and Molecular Bioengineering, 2019, 12, 529-540.	2.1	8
10	Microclot array elastometry for integrated measurement of thrombus formation and clot biomechanics under fluid shear. Nature Communications, 2019, 10, 2051.	12.8	44
11	Engineered Tissue Development in Biofabricated 3D Geometrical Confinement–A Review. ACS Biomaterials Science and Engineering, 2019, 5, 3688-3702.	5.2	18
12	Dispersible hydrogel force sensors reveal patterns of solid mechanical stress in multicellular spheroid cultures. Nature Communications, 2019, 10, 144.	12.8	83
13	Characterization of Regional Changes in Myocardial Strain and Stiffness after Myocardial Infarction using Speckleâ€Tracking Echocardiography in Swine. FASEB Journal, 2019, 33, 531.4.	0.5	0
14	Tempo-Spatial Compressed Sensing of Organ-on-a-Chip for Pervasive Health. IEEE Journal of Biomedical and Health Informatics, 2018, 22, 325-334.	6.3	3
15	Exceptional point engineered glass slide for microscopic thermal mapping. Nature Communications, 2018, 9, 1764.	12.8	37
16	NANOG restores the impaired myogenic differentiation potential of skeletal myoblasts after multiple population doublings. Stem Cell Research, 2018, 26, 55-66.	0.7	24
17	Fibrotic microtissue array to predict anti-fibrosis drug efficacy. Nature Communications, 2018, 9, 2066.	12.8	102
18	NANOG Restores Contractility of Mesenchymal Stem Cell-Based Senescent Microtissues. Tissue Engineering - Part A, 2017, 23, 535-545.	3.1	18

#	Article	IF	CITATIONS
19	A tempo-spatial compressed sensing architecture for efficient high-throughput information acquisition in organs-on-a-chip. , 2017, , .		2
20	NANOG Reverses the Myogenic Differentiation Potential of Senescent Stem Cells by Restoring ACTIN Filamentous Organization and SRF-Dependent Gene Expression. Stem Cells, 2017, 35, 207-221.	3.2	30
21	Lung Microtissue Array to Screen the Fibrogenic Potential of Carbon Nanotubes. Scientific Reports, 2016, 6, 31304.	3.3	25
22	YAP and TAZ control peripheral myelination and the expression of laminin receptors in Schwann cells. Nature Neuroscience, 2016, 19, 879-887.	14.8	148
23	A microfabricated magnetic actuation device for mechanical conditioning of arrays of 3D microtissues. Lab on A Chip, 2015, 15, 2496-2503.	6.0	29
24	Magnetic approaches to study collective three-dimensional cell mechanics in long-term cultures (invited). Journal of Applied Physics, 2014, 115, 172616.	2.5	14
25	Force-driven evolution of mesoscale structure in engineered 3D microtissues and the modulation of tissue stiffening. Biomaterials, 2014, 35, 5056-5064.	11.4	52
26	A simple method to estimate the exponential material parameters of heart valve tissue based on analogy between uniaxial tension and micropipette aspiration. Biomechanics and Modeling in Mechanobiology, 2013, 12, 1283-1290.	2.8	3
27	Decoupling Cell and Matrix Mechanics in Engineered Microtissues Using Magnetically Actuated Microcantilevers. Advanced Materials, 2013, 25, 1699-1705.	21.0	89
28	Magnetic Microtissue Stretching System to Study the Mechanobiology of 3D Fibroblast Populated Collagen Matrix. , 2012, , .		0
29	An improved texture correlation algorithm to measure substrate–cytoskeletal network strain transfer under large compressive strain. Journal of Biomechanics, 2012, 45, 76-82.	2.1	11
30	Measurement of layer-specific mechanical properties in multilayered biomaterials by micropipette aspiration. Acta Biomaterialia, 2011, 7, 1220-1227.	8.3	78
31	Semi-confined compression of microfabricated polymerized biomaterial constructs. Journal of Micromechanics and Microengineering, 2011, 21, 054014.	2.6	14
32	Influence of substrate stiffness on the phenotype of heart cells. Biotechnology and Bioengineering, 2010, 105, 1148-1160.	3.3	307
33	The Effects of Cell Contraction and Loss of Adhesion on the Apoptosis of Valve Interstitial Cells. , $2010, \ldots$		0
34	Comparison of Analytical and Finite Element Implementation of Exponential Constitutive Models for Valve Tissue Under Micropipette Aspiration. , 2010 , , .		0
35	Comparison of analytical and inverse finite element approaches to estimate cell viscoelastic properties by micropipette aspiration. Journal of Biomechanics, 2009, 42, 2768-2773.	2.1	50
36	Parametric finite element study on slotted rectangular and square HSS tension connections. Journal of Constructional Steel Research, 2009, 65, 611-621.	3.9	4

3

#	Article	IF	CITATIONS
37	Calcification by Valve Interstitial Cells Is Regulated by the Stiffness of the Extracellular Matrix. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 936-942.	2.4	294