Seyed Javad Moghaddam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4957307/publications.pdf

Version: 2024-02-01

64 papers

3,349 citations

236925 25 h-index 289244 40 g-index

69 all docs 69 docs citations

69 times ranked 5860 citing authors

#	Article	IF	CITATIONS
1	KRAS: The Art of Understanding a Complex Gene. , 2022, , 876-888.		О
2	Lung Cancer and Methodology for Immunopreventive Study. Methods in Molecular Biology, 2022, 2435, 203-214.	0.9	0
3	Cell Type-Specific Roles of STAT3 Signaling in the Pathogenesis and Progression of K-ras Mutant Lung Adenocarcinoma. Cancers, 2022, 14, 1785.	3.7	3
4	OBIF: an omics-based interaction framework to reveal molecular drivers of synergy. NAR Genomics and Bioinformatics, 2022, 4, lqac028.	3.2	5
5	Targeting IL- $1\hat{l}^2$ as an immunopreventive and therapeutic modality for K-rasâ \in "mutant lung cancer. JCI Insight, 2022, 7, .	5.0	25
6	Augmented Lipocalin-2 Is Associated with Chronic Obstructive Pulmonary Disease and Counteracts Lung Adenocarcinoma Development. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 90-101.	5.6	22
7	Single-Cell Expression Landscape of SARS-CoV-2 Receptor ACE2 and Host Proteases in Normal and Malignant Lung Tissues from Pulmonary Adenocarcinoma Patients. Cancers, 2021, 13, 1250.	3.7	7
8	Resolving the Spatial and Cellular Architecture of Lung Adenocarcinoma by Multiregion Single-Cell Sequencing. Cancer Discovery, 2021, 11, 2506-2523.	9.4	68
9	Abstract 130: Resolving the spatial and cellular architecture of lung adenocarcinoma by multi-region single-cell sequencing., 2021,,.		O
10	Abstract 702: Single-cell expression landscape of SARS-CoV-2 receptor ACE2 and host proteases in human lung adenocarcinoma. , 2021, , .		0
11	Cigarette Smoke or Cigarette Condensate Exposure Accelerates Growth of FLT3-ITD AML Models, Induces Oxidative Stress, and Alters DNA Methylation. Blood, 2021, 138, 3331-3331.	1.4	0
12	Interleukin-17–induced neutrophil extracellular traps mediate resistance to checkpoint blockade in pancreatic cancer. Journal of Experimental Medicine, 2020, 217, .	8.5	219
13	Interplay between estrogen and Stat3/NF-κB-driven immunomodulation in lung cancer. Carcinogenesis, 2020, 41, 1529-1542.	2.8	9
14	Cigarette Smoke or Cigarette Condensate Exposure Enhances Growth of FLT3-ITD AML Models and Alters DNA Methylation and Leukemic Gene Expression. Blood, 2020, 136, 29-30.	1.4	0
15	Understanding the Complexity of the Tumor Microenvironment in K-ras Mutant Lung Cancer: Finding an Alternative Path to Prevention and Treatment. Frontiers in Oncology, 2019, 9, 1556.	2.8	27
16	Acceleration of AML Progression By Cigarette Smoke Exposure or Condensate Exposure and Associated DNA Methylation Alterations. Blood, 2019, 134, 2554-2554.	1.4	1
17	Abstract 2356: Estrogen medicates sex specific function of epithelial STAT3 in K-ras mutant lung tumorigenesis by reprogramming lung tumor microenvironment. , 2019, , .		O
18	Abstract 2356: Estrogen medicates sex specific function of epithelial STAT3 in K-ras mutant lung tumorigenesis by reprogramming lung tumor microenvironment. , 2019, , .		0

#	Article	lF	Citations
19	Airway Epithelial Barrier Dysfunction in Chronic Obstructive Pulmonary Disease: Role of Cigarette Smoke Exposure. American Journal of Respiratory Cell and Molecular Biology, 2018, 58, 157-169.	2.9	217
20	Reduced <scp>IL</scp> â€6 levels and tumorâ€associated phosphoâ€ <scp>STAT</scp> 3 are associated with reduced tumor development in a mouse model of lung cancer chemoprevention with <i>myoâ€</i> i>inositol. International Journal of Cancer, 2018, 142, 1405-1417.	5.1	33
21	Sex specific function of epithelial STAT3 signaling in pathogenesis of K-ras mutant lung cancer. Nature Communications, 2018, 9, 4589.	12.8	57
22	IL22 Promotes <i>Kras</i> -Mutant Lung Cancer by Induction of a Protumor Immune Response and Protection of Stemness Properties. Cancer Immunology Research, 2018, 6, 788-797.	3.4	59
23	Abstract 5731: Synergistic effect of cigarette smoke and bacterial-induced chronic obstructive pulmonary disease type airway inflammation on promotion of K-ras mutant lung cancer. Cancer Research, 2018, 78, 5731-5731.	0.9	2
24	Requirement for MUC5AC in KRAS-dependent lung carcinogenesis. JCI Insight, 2018, 3, .	5.0	25
25	COPD-Type lung inflammation promotes K-ras mutant lung cancer through epithelial HIF-1α mediated tumor angiogenesis and proliferation. Oncotarget, 2018, 9, 32972-32983.	1.8	32
26	Mig-6 deficiency cooperates with oncogenic Kras to promote mouse lung tumorigenesis. Lung Cancer, 2017, 112, 47-56.	2.0	14
27	Abstract 2687: Toll like receptors mediated inflammatory signals mediate promotion of K-ras mutant lung cancer by chronic obstructive pulmonary disease. , 2017, , .		O
28	Abstract 2679: A promoting role for the epithelial MyD88/IRAK4/NF-kB signaling in K-ras mutant lung tumorigenesis. , 2017, , .		O
29	IL6 Blockade Reprograms the Lung Tumor Microenvironment to Limit the Development and Progression of K-ras–Mutant Lung Cancer. Cancer Research, 2016, 76, 3189-3199.	0.9	165
30	Tumor necrosis factor links chronic obstructive pulmonary disease and K-ras mutant lung cancer through induction of an immunosuppressive pro-tumor microenvironment. Oncolmmunology, 2016, 5, e1229724.	4.6	17
31	Impact of interleukin-22 on K-ras mutant lung cancer promotion and stemness properties. Journal of Thoracic Oncology, 2016, 11, S26-S27.	1.1	1
32	Abstract 4168: Mig-6 ablation cooperates with oncogenic Kras in promoting mouse lung tumorigenesis. , 2016, , .		0
33	Abstract 4398: Impact of Interleukin-22 on K-ras mutant lung tumor microenvironment and stemness properties. , 2016, , .		O
34	Ndfip1 Regulates Itch Ligase Activity and Airway Inflammation via UbcH7. Journal of Immunology, 2015, 194, 2160-2167.	0.8	12
35	STAT3 restrains RANK- and TLR4-mediated signalling by suppressing expression of the E2 ubiquitin-conjugating enzyme Ubc13. Nature Communications, 2014, 5, 5798.	12.8	53
36	Oncogenic KRAS Confers Chemoresistance by Upregulating NRF2. Cancer Research, 2014, 74, 7430-7441.	0.9	237

#	Article	IF	Citations
37	T helper 17 cells play a critical pathogenic role in lung cancer. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5664-5669.	7.1	267
38	Muc5b is required for airway defence. Nature, 2014, 505, 412-416.	27.8	617
39	Lung epithelial cells are essential effectors of inducible resistance to pneumonia. Mucosal Immunology, 2014, 7, 78-88.	6.0	71
40	Abstract B43: Targeting tumor microenvironment for treatment of K-ras mutant lung cancer. , 2014, , .		0
41	Promoting effect of neutrophils on lung tumorigenesis is mediated by CXCR2 and neutrophil elastase. Molecular Cancer, 2013, 12, 154.	19.2	136
42	Abstract 4977: An essential role for neutrophils in lung cancer promotion , 2013, , .		0
43	A Protective Role For Toll Like Receptor 2 In Lung Cancer Promotion. , 2012, , .		O
44	An Essential Role For T Helper 17 (Th17) Immune Response In Lung Cancer Promotion By Inflammation. , 2012, , .		0
45	Enhancement of lung tumorigenesis in a Gprc5a Knockout mouse by chronic extrinsic airway inflammation. Molecular Cancer, $2012,11,4$.	19.2	29
46	Abstract A32: Mechanistic Dissection of Lung Cancer Promotion by Airway Inflammation. Clinical Cancer Research, 2012, 18, A32-A32.	7.0	0
47	Airway-Targeted Overexpression Of Tumor Necrosis Factor (TNF) Induces Airway Inflammation And Promotes Lung Carcinogenesis. , 2011, , .		O
48	Nontypeable Haemophilus influenzae in chronic obstructive pulmonary disease and lung cancer. International Journal of COPD, 2011, 6, 113.	2.3	74
49	Nf-kB Is The Essential Regulator Of Lung Cancer Promotion By COPD-Like Airway Inflammation In Mice. , 2011, , .		O
50	Interleukin 6, but Not T Helper 2 Cytokines, Promotes Lung Carcinogenesis. Cancer Prevention Research, 2011, 4, 51-64.	1.5	73
51	Hypoxia-inducible Factor-1alpha Is A Key Player In Promotion Of Lung Cancer By COPD-like Airway Inflammation In Mice. , 2010, , .		0
52	Mast Cell Proteases And Lung Cancer. , 2010, , .		0
53	Interleukin-6 Is Required for The Promotion Of Lung Cancer By COPD-like Airway Inflammation In Mice. , 2010, , .		O
54	Promotion of Lung Carcinogenesis by Chronic Obstructive Pulmonary Disease–Like Airway Inflammation in a K-ras–Induced Mouse Model. American Journal of Respiratory Cell and Molecular Biology, 2009, 40, 443-453.	2.9	125

#	Article	IF	CITATIONS
55	Curcumin inhibits COPD-like airway inflammation and lung cancer progression in mice. Carcinogenesis, 2009, 30, 1949-1956.	2.8	97
56	<i>Pten</i> Inactivation Accelerates Oncogenic <i>K-ras</i> –Initiated Tumorigenesis in a Mouse Model of Lung Cancer. Cancer Research, 2008, 68, 1119-1127.	0.9	111
57	Stimulation of Lung Innate Immunity Protects against Lethal Pneumococcal Pneumonia in Mice. American Journal of Respiratory and Critical Care Medicine, 2008, 177, 1322-1330.	5.6	103
58	<i>Haemophilus influenza</i> e Lysate Induces Aspects of the Chronic Obstructive Pulmonary Disease Phenotype. American Journal of Respiratory Cell and Molecular Biology, 2008, 38, 629-638.	2.9	104
59	Central Role of Muc5ac Expression in Mucous Metaplasia and Its Regulation by Conserved 5′ Elements. American Journal of Respiratory Cell and Molecular Biology, 2007, 37, 273-290.	2.9	155
60	The frequency of C3435T MDR1 gene polymorphism in Iranian patients with ulcerative colitis. International Journal of Colorectal Disease, 2007, 22, 999-1003.	2.2	46
61	Immunohistochemical analysis of p53, cyclinD1, RB1, c-fos and N-ras gene expression in hepatocellular carcinoma in Iran. World Journal of Gastroenterology, 2007, 13, 588.	3.3	23
62	P53, cyclin D1 and Rb genes expression changes in esophageal squamous cell carcinoma in iran. Gastroenterology, 2003, 124, A296.	1.3	0
63	IMMUNOHISTOCHEMICAL ANALYSIS OF P53, CYCLIN D1,RB,C-FOS AND N-RAS GENES EXPRESSION IN HEPATOCELLULAR CARCINOMA IN IRAN. American Journal of Gastroenterology, 2003, 98, S85.	0.4	O
64	Natural Agents for Chemoprevention of Lung Cancer. , 0, , 441-455.		0