Francisco Tenllado

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4957028/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Double-Stranded RNA-Mediated Interference with Plant Virus Infection. Journal of Virology, 2001, 75, 12288-12297.	3.4	195
2	Crude extracts of bacterially expressed dsRNA can be used to protect plants against virus infections. BMC Biotechnology, 2003, 3, 3.	3.3	167
3	RNA interference as a new biotechnological tool for the control of virus diseases in plants. Virus Research, 2004, 102, 85-96.	2.2	164
4	The Capsicum L3 Gene-Mediated Resistance against the Tobamoviruses Is Elicited by the Coat Protein. Virology, 1995, 209, 498-505.	2.4	157
5	A Single Amino Acid Mutation in the Plum pox virus Helper Component-Proteinase Gene Abolishes Both Synergistic and RNA Silencing Suppression Activities. Phytopathology, 2005, 95, 894-901.	2.2	90
6	The Coat Protein Is Required for the Elicitation of the Capsicum L2 Gene-Mediated Resistance Against the Tobamoviruses. Molecular Plant-Microbe Interactions, 1997, 10, 107-113.	2.6	78
7	Oxylipin Biosynthesis Genes Positively Regulate Programmed Cell Death during Compatible Infections with the Synergistic Pair <i>Potato Virus X-Potato Virus Y</i> and Tomato Spotted Wilt Virus. Journal of Virology, 2013, 87, 5769-5783.	3.4	76
8	Transcriptional Changes and Oxidative Stress Associated with the Synergistic Interaction Between <i>Potato virus X</i> and <i>Potato virus Y</i> and Their Relationship with Symptom Expression. Molecular Plant-Microbe Interactions, 2009, 22, 1431-1444.	2.6	75
9	PVX–potyvirus synergistic infections differentially alter microRNA accumulation in Nicotiana benthamiana. Virus Research, 2012, 165, 231-235.	2.2	73
10	Host-dependent differences during synergistic infection by Potyviruses with potato virus X. Molecular Plant Pathology, 2004, 5, 29-35.	4.2	72
11	Genetic Dissection of the Multiple Functions of Alfalfa Mosaic Virus Coat Protein in Viral RNA Replication, Encapsidation, and Movement. Virology, 2000, 268, 29-40.	2.4	62
12	Nicotiana benthamiana Plants Transformed with the 54-kDa Region of the Pepper Mild Mottle Tobamovirus Replicase Gene Exhibit Two Types of Resistance Responses against Vital Infection. Virology, 1995, 211, 170-183.	2.4	59
13	RNAi of ace1 and ace2 in Blattella germanica reveals their differential contribution to acetylcholinesterase activity and sensitivity to insecticides. Insect Biochemistry and Molecular Biology, 2009, 39, 913-919.	2.7	56
14	Efficient Double-Stranded RNA Production Methods for Utilization in Plant Virus Control. Methods in Molecular Biology, 2015, 1236, 255-274.	0.9	54
15	Comparative Analysis of Transcriptomic and Hormonal Responses to Compatible and Incompatible Plant-Virus Interactions that Lead to Cell Death. Molecular Plant-Microbe Interactions, 2012, 25, 709-723.	2.6	53
16	Virulence determines beneficial tradeâ€offs in the response of virusâ€infected plants to drought via induction of salicylic acid. Plant, Cell and Environment, 2017, 40, 2909-2930.	5.7	49
17	The P25 Protein of Potato Virus X (PVX) Is the Main Pathogenicity Determinant Responsible for Systemic Necrosis in PVX-Associated Synergisms. Journal of Virology, 2015, 89, 2090-2103.	3.4	48
18	Resistance to Pepper Mild Mottle Tobamovirus Conferred by the 54-kDa Gene Sequence in Transgenic Plants Does Not Require Expression of the Wild-Type 54-kDa Protein. Virology, 1996, 219, 330-335.	2.4	41

#	Article	IF	CITATIONS
19	High Temperature, High Ambient CO2 Affect the Interactions between Three Positive-Sense RNA Viruses and a Compatible Host Differentially, but not Their Silencing Suppression Efficiencies. PLoS ONE, 2015, 10, e0136062.	2.5	40
20	Effects of Elevated CO ₂ and Temperature on Pathogenicity Determinants and Virulence of <i>Potato virus X</i> /Potyvirus-Associated Synergism. Molecular Plant-Microbe Interactions, 2015, 28, 1364-1373.	2.6	37
21	The Effects of High Temperature on Infection by Potato virus Y, Potato virus A, and Potato leafroll virus. Plant Pathology Journal, 2016, 32, 321-328.	1.7	36
22	The influence of <i>cis</i> â€acting <scp>P</scp> 1 protein and translational elements on the expression of <i><scp>P</scp>otato virus <scp>Y</scp></i> helperâ€component proteinase (<scp>HCP</scp> ro) in heterologous systems and its suppression of silencing activity. Molecular Plant Pathology, 2013, 14, 530-541.	4.2	35
23	Cell death triggered by the P25 protein in <i>Potato virus X</i> â€associated synergisms results from endoplasmic reticulum stress in <i>Nicotiana benthamiana</i> . Molecular Plant Pathology, 2019, 20, 194-210.	4.2	35
24	Transient Expression of Homologous Hairpin RNA Causes Interference with Plant Virus Infection and Is Overcome by a Virus Encoded Suppressor of Gene Silencing. Molecular Plant-Microbe Interactions, 2003, 16, 149-158.	2.6	32
25	Contribution of Ldace1 gene to acetylcholinesterase activity in Colorado potato beetle. Insect Biochemistry and Molecular Biology, 2011, 41, 795-803.	2.7	29
26	Effects and Effectiveness of Two RNAi Constructs for Resistance to Pepper golden mosaic virus in Nicotiana benthamiana Plants. Viruses, 2013, 5, 2931-2945.	3.3	26
27	Effects of simultaneously elevated temperature and CO2 levels on Nicotiana benthamiana and its infection by different positive-sense RNA viruses are cumulative and virus type-specific. Virology, 2017, 511, 184-192.	2.4	22
28	Potato Virus Y HCPro Suppression of Antiviral Silencing in Nicotiana benthamiana Plants Correlates with Its Ability To Bind <i>In Vivo</i> to 21- and 22-Nucleotide Small RNAs of Viral Sequence. Journal of Virology, 2017, 91, .	3.4	21
29	Rapid detection and differentiation of tobamoviruses infecting L-resistant genotypes of pepper by RT-PCR and restriction analysis. Journal of Virological Methods, 1994, 47, 165-173.	2.1	20
30	A procedure for the transient expression of genes by agroinfiltration above the permissive threshold to study temperatureâ€sensitive processes in plant–pathogen interactions. Molecular Plant Pathology, 2014, 15, 848-857.	4.2	18
31	<i>Potato virus Y</i> HCPro Localization at Distinct, Dynamically Related and Environment-Influenced Structures in the Cell Cytoplasm. Molecular Plant-Microbe Interactions, 2014, 27, 1331-1343.	2.6	17
32	Topical Application of Escherichia coli-Encapsulated dsRNA Induces Resistance in Nicotiana benthamiana to Potato Viruses and Involves RDR6 and Combined Activities of DCL2 and DCL4. Plants, 2021, 10, 644.	3.5	17
33	Transient expression of homologous hairpin RNA interferes with PVY transmission by aphids. Virology Journal, 2008, 5, 42.	3.4	15
34	Characterization of the Recombinant Forms Arising from a Potato virus X Chimeric Virus Infection under RNA Silencing Pressure. Molecular Plant-Microbe Interactions, 2006, 19, 904-913.	2.6	14
35	Ambient conditions of elevated temperature and CO2 levels are detrimental to the probabilities of transmission by insects of a Potato virus Y isolate and to its simulated prevalence in the environment. Virology, 2019, 530, 1-10.	2.4	14
36	Title is missing!. Transgenic Research, 1999, 8, 83-93.	2.4	13

FRANCISCO TENLLADO

#	Article	IF	CITATIONS
37	A Model to Explain Temperature Dependent Systemic Infection of Potato Plants by Potato virus Y. Plant Pathology Journal, 2017, 33, 206-211.	1.7	11
38	Identification of MAPKs as signal transduction components required for the cell death response during compatible infection by the synergistic pair Potato virus X-Potato virus Y. Virology, 2017, 509, 178-184.	2.4	9
39	Effects of a changing environment on the defenses of plants to viruses. Current Opinion in Virology, 2020, 42, 40-46.	5.4	9
40	Virus infection induces resistance to Pseudomonas syringae and to drought in both compatible and incompatible bacteria–host interactions, which are compromised under conditions of elevated temperature and CO2 levels. Journal of General Virology, 2020, 101, 122-135.	2.9	9
41	Pepper resistance-breaking tobamoviruses: Can they co-exist in single pepper plants?. European Journal of Plant Pathology, 1997, 103, 235-243.	1.7	8
42	Overexpression of polygalacturonase-inhibiting protein (PGIP) gene from Hypericum perforatum alters expression of multiple defense-related genes and modulates recalcitrance to Agrobacterium tumefaciens in tobacco. Journal of Plant Physiology, 2020, 253, 153268.	3.5	8
43	HCPro-mediated transmission by aphids of purified virions does not require its silencing suppression function and correlates with its ability to coat cell microtubules in loss-of-function mutant studies. Virology, 2018, 525, 10-18.	2.4	7
44	<i>In planta</i> vs viral expression of HCPro affects its binding of nonplant 21–22 nucleotide small RNAs, but not its preference for 5′â€ŧerminal adenines, or its effects on small RNA methylation. New Phytologist, 2022, 233, 2266-2281.	7.3	7
45	Transgenic expression of Hyp-1 gene from Hypericum perforatum L. alters expression of defense-related genes and modulates recalcitrance to Agrobacterium tumefaciens. Planta, 2020, 251, 13.	3.2	5
46	Differences in Virulence among PVY Isolates of Different Geographical Origins When Infecting an Experimental Host under Two Growing Environments Are Not Determined by HCPro. Plants, 2021, 10, 1086.	3.5	5
47	Infection of Nicotiana benthamiana Plants with Potato Virus X (PVX). Bio-protocol, 2016, 6, .	0.4	5
48	Transcriptional responses of Hypericum perforatum cells to Agrobacterium tumefaciens and differential gene expression in dark glands. Functional Plant Biology, 2021, 48, 936.	2.1	3
49	Water Deficit Improves Reproductive Fitness in Nicotiana benthamiana Plants Infected by Cucumber mosaic virus. Plants, 2022, 11, 1240.	3.5	2
50	Molecular insights on potato yellow vein crinivirus infections in the highlands of Colombia. Journal of General Virology, 2021, 102, .	2.9	1