
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4956488/publications.pdf Version: 2024-02-01

FU-DE FENC

#	Article	IF	CITATIONS
1	Noncovalent Engineering of Apoferritin with a PECylated [FeFe] Hydrogenase Mimic for In Situ Polymerization. ACS Applied Bio Materials, 2022, 5, 1756-1765.	4.6	0
2	Synthesis of a sulfonated methylene blue-backboned polymer for biodetections. Dyes and Pigments, 2022, 203, 110360.	3.7	4
3	Cascade Reactions by Nitric Oxide and Hydrogen Radical for Anti-Hypoxia Photodynamic Therapy Using an Activatable Photosensitizer. Journal of the American Chemical Society, 2021, 143, 868-878.	13.7	136
4	Photoactivated In Situ Generation of Near Infrared Cyanines for Spatiotemporally Controlled Fluorescence Imaging in Living Cells. Angewandte Chemie, 2021, 133, 17026-17030.	2.0	6
5	Photoactivated In Situ Generation of Near Infrared Cyanines for Spatiotemporally Controlled Fluorescence Imaging in Living Cells. Angewandte Chemie - International Edition, 2021, 60, 16889-16893.	13.8	19
6	One pot synthesis and self-assembly of methylene blue-backboned polymers. Chemical Communications, 2021, 57, 12313-12316.	4.1	3
7	Biomimetic Polymer-Templated Copper Nanoparticles Stabilize a Temozolomide Intermediate for Chemotherapy against Glioblastoma Multiforme. ACS Applied Bio Materials, 2021, 4, 8004-8012.	4.6	6
8	Visible Light and Glutathione Dually Responsive Delivery of a Polymer-Conjugated Temozolomide Intermediate for Glioblastoma Chemotherapy. ACS Applied Materials & Interfaces, 2021, 13, 55851-55861.	8.0	7
9	Apoferritin as a Carrier of Cu(II) Diethyldithiocarbamate and Biomedical Application for Glutathione-Responsive Combination Chemotherapy. ACS Applied Bio Materials, 2020, 3, 654-663.	4.6	23
10	Precise engineering of apoferritin through site-specific host–guest binding. Chemical Communications, 2020, 56, 12897-12900.	4.1	2
11	Temozolomide–Doxorubicin Conjugate as a Double Intercalating Agent and Delivery by Apoferritin for Glioblastoma Chemotherapy. ACS Applied Materials & Interfaces, 2020, 12, 34599-34609.	8.0	25
12	Aggregation-Enhanced Two-Photon Absorption of Anionic Conjugated Polyelectrolytes. Journal of Physical Chemistry Letters, 2020, 11, 8292-8296.	4.6	8
13	GSH and H ₂ O ₂ Coâ€Activatable Mitochondriaâ€Targeted Photodynamic Therapy under Normoxia and Hypoxia. Angewandte Chemie, 2020, 132, 12220-12226.	2.0	99
14	Folate-Modified Photoelectric Responsive Polymer Microarray as Bionic Artificial Retina to Restore Visual Function. ACS Applied Materials & amp; Interfaces, 2020, 12, 28759-28767.	8.0	12
15	Self-Assembly of Albumin and [FeFe]-Hydrogenase Mimics for Photocatalytic Hydrogen Evolution. ACS Applied Bio Materials, 2020, 3, 2482-2488.	4.6	4
16	GSH and H ₂ O ₂ Coâ€Activatable Mitochondriaâ€Targeted Photodynamic Therapy under Normoxia and Hypoxia. Angewandte Chemie - International Edition, 2020, 59, 12122-12128.	13.8	143
17	Enhanced Copper–Temozolomide Interactions by Protein for Chemotherapy against Glioblastoma Multiforme. ACS Applied Materials & Interfaces, 2019, 11, 41935-41945.	8.0	16
18	Iron sulfur clusters in protein nanocages for photocatalytic hydrogen generation in acidic aqueous solutions. Chemical Science, 2019, 10, 2179-2185.	7.4	15

#	Article	IF	CITATIONS
19	A photosynthesis-inspired supramolecular system: caging photosensitizer and photocatalyst in apoferritin. Photosynthesis Research, 2019, 142, 169-180.	2.9	3
20	Diiron Dithiolate Complex Induced Helical Structure of Histone and Application in Photochemical Hydrogen Generation. ACS Applied Materials & Interfaces, 2019, 11, 19691-19699.	8.0	4
21	Optical properties of phosphonium-, quaternary ammonium- and imidazolium- substituted regioregular polythiophenes and application for imaging live cells. Dyes and Pigments, 2019, 170, 107581.	3.7	13
22	Facile Synthesis of a Carnosineâ€Pendent Cationic Polymer via Free Radical Polymerization and Application in Gene Delivery. Macromolecular Chemistry and Physics, 2019, 220, 1900049.	2.2	1
23	Mitochondria Targeting Fluorescent Probes Based on through Bondâ€Energy Transfer for Mutually Imaging Signaling Molecules H 2 S and H 2 O 2. Chemistry - A European Journal, 2019, 25, 9164-9169.	3.3	21
24	Light-Controlled in Vitro Gene Delivery Using Polymer-Tethered Spiropyran as a Photoswitchable Photosensitizer. ACS Applied Materials & Interfaces, 2019, 11, 15222-15232.	8.0	12
25	Inhibition of AIM2 inflammasome-mediated pyroptosis by Andrographolide contributes to amelioration of radiation-induced lung inflammation and fibrosis. Cell Death and Disease, 2019, 10, 957.	6.3	110
26	Facile crosslinking of polythiophenes by polyethylenimine via ester aminolysis for selective Cu(II) detection in water. Biosensors and Bioelectronics, 2018, 109, 255-262.	10.1	22
27	Synthesis of Structurally Defined Cationic Polythiophenes for DNA Binding and Gene Delivery. ACS Applied Materials & Interfaces, 2018, 10, 4519-4529.	8.0	17
28	Remarkable Amplification of Polyethylenimine-Mediated Gene Delivery Using Cationic Poly(phenylene) Tj ETQqO	0 0 rgBT /0 8.9	Overlock 10 ⁻ 11
29	A water soluble donor–acceptor–donor conjugated oligomer as a photosensitizer for mitochondria-targeted photodynamic therapy. Chemical Communications, 2018, 54, 9194-9197.	4.1	23
30	An <i>S</i> -alkyl thiocarbamate-based biosensor for highly sensitive and selective detection of hypochlorous acid. Analyst, The, 2018, 143, 4251-4255.	3.5	9
31	Spiropyran in nanoassemblies as a photosensitizer for photoswitchable ROS generation in living cells. Chemical Science, 2018, 9, 5816-5821.	7.4	49
32	Cationic Polythiophenes as Gene Delivery Enhancer. ACS Applied Materials & Interfaces, 2017, 9, 16735-16740.	8.0	15
33	Protein Nanocage-Based Photo-Controlled Nitric Oxide Releasing Platform. ACS Applied Materials & Interfaces, 2017, 9, 19519-19524.	8.0	19
34	H ₂ S Activated Drug Release from Protein Cages. ACS Applied Materials & Interfaces, 2017, 9, 33571-33575.	8.0	14
35	Protein Nanocages for Delivery and Release of Luminescent Ruthenium(II) Polypyridyl Complexes. ACS Applied Materials & Interfaces, 2016, 8, 22756-22761.	8.0	46

36Targeted Gene Delivery to Macrophages by Biodegradable Star-Shaped Polymers. ACS Applied Materials
& amp; Interfaces, 2016, 8, 3719-3724.8.022

#	Article	IF	CITATIONS
37	Precisely Tunable Engineering of Sub-30 nm Monodisperse Oligonucleotide Nanoparticles. Journal of the American Chemical Society, 2014, 136, 234-240.	13.7	25
38	Efficient synthesis of 5-hydroxymethyl-, 5-formyl-, and 5-carboxyl-2′-deoxycytidine and their triphosphates. RSC Advances, 2014, 4, 36036-36039.	3.6	13
39	Enhanced Fluorescence Properties of Poly(phenylene ethynylene)-Conjugated Polyelectrolytes Designed to Avoid Aggregation. ACS Macro Letters, 2014, 3, 405-409.	4.8	27
40	Tunable Thioesters as "Reduction―Responsive Functionality for Traceless Reversible Protein PEGylation. Journal of the American Chemical Society, 2013, 135, 10938-10941.	13.7	55
41	Remarkable Photophysics and Amplified Quenching of Conjugated Polyelectrolyte Oligomers. Journal of Physical Chemistry Letters, 2013, 4, 1410-1414.	4.6	22
42	Ion-Induced Aggregation of Conjugated Polyelectrolytes Studied by Fluorescence Correlation Spectroscopy. Journal of Physical Chemistry B, 2013, 117, 16314-16324.	2.6	19
43	"Light Switch―Effect Upon Binding of Ru-dppz to Water-Soluble Conjugated Polyelectrolyte Dendrimers. Journal of Physical Chemistry Letters, 2012, 3, 1707-1710.	4.6	5
44	Helical Conjugated Polyelectrolyte Aggregation Induced by Biotin–Avidin Interaction. Journal of Physical Chemistry Letters, 2012, 3, 1711-1715.	4.6	12
45	Conjugated Polyelectrolyte Dendrimers: Aggregation, Photophysics, and Amplified Quenching. Langmuir, 2012, 28, 16679-16691.	3.5	22
46	It Takes More Than an Imine: The Role of the Central Atom on the Electron-Accepting Ability of Benzotriazole and Benzothiadiazole Oligomers. Journal of the American Chemical Society, 2012, 134, 2599-2612.	13.7	135
47	Waterâ€Soluble Conjugated Polymers for Fluorescentâ€Enzyme Assays. Macromolecular Rapid Communications, 2010, 31, 1405-1421.	3.9	57
48	Gadolinium(III) chelated conjugated polymer as a potential MRI contrast agent. Polymer, 2010, 51, 1336-1340.	3.8	30
49	Fluorescent conjugated polymer-based FRET technique for detection of DNA methylation of cancer cells. Nature Protocols, 2010, 5, 1255-1264.	12.0	91
50	Cationic Conjugated Polymers for Optical Detection of DNA Methylation, Lesions, and Single Nucleotide Polymorphisms. Accounts of Chemical Research, 2010, 43, 260-270.	15.6	264
51	Waterâ€Soluble Conjugated Polyelectrolyteâ€Based Fluorescence Enzyme Coupling Protocol for Continuous and Sensitive <i>l²</i> â€Galactosidase Detection. Macromolecular Chemistry and Physics, 2009, 210, 1188-1193.	2.2	9
52	Macromol. Chem. Phys. 15/2009. Macromolecular Chemistry and Physics, 2009, 210, .	2.2	0
53	Fluorescenceâ€Amplifying Assay for Irradiated DNA Lesions Using Waterâ€Soluble Conjugated Polymers. Macromolecular Rapid Communications, 2009, 30, 147-151.	3.9	13
54	Fluorescence Logicâ€Signalâ€Based Multiplex Detection of Nucleases with the Assembly of a Cationic Conjugated Polymer and Branched DNA. Angewandte Chemie - International Edition, 2009, 48, 5316-5321.	13.8	105

#	Article	IF	CITATIONS
55	Fluorescent Conjugated Polyelectrolytes for Biomacromolecule Detection. Advanced Materials, 2008, 20, 2959-2964.	21.0	201
56	Conjugated polyelectrolytes for label-free DNA microarrays. Trends in Biotechnology, 2008, 26, 57-59.	9.3	9
57	Cationic Conjugated Polyelectrolyte/Molecular Beacon Complex for Sensitive, Sequence-Specific, Real-Time DNA Detection. Langmuir, 2008, 24, 12138-12141.	3.5	35
58	Synthesis of a New Water-Soluble Oligo(phenylenevinylene) Containing a Tyrosine Moiety for Tyrosinase Activity Detection. Organic Letters, 2008, 10, 5369-5372.	4.6	36
59	Fluorescent Conjugated Polyelectrolyte as an Indicator for Convenient Detection of DNA Methylation. Journal of the American Chemical Society, 2008, 130, 11338-11343.	13.7	140
60	Selective and Homogeneous Fluorescent DNA Detection by Target-Induced Strand Displacement Using Cationic Conjugated Polyelectrolytes. Analytical Chemistry, 2008, 80, 2239-2243.	6.5	43
61	Water-soluble conjugated polymers for continuous and sensitive fluorescence assays for phosphatase and peptidase. Journal of Materials Chemistry, 2007, 17, 4147.	6.7	102
62	Fluorescence ratiometric assays of hydrogen peroxide and glucose in serum using conjugated polyelectrolytes. Journal of Materials Chemistry, 2007, 17, 3702.	6.7	72
63	Intercalation Interactions between dsDNA and Acridine Studied by Single Molecule Force Spectroscopy. Langmuir, 2007, 23, 9140-9142.	3.5	38
64	Continuous Fluorometric Assays for Acetylcholinesterase Activity and Inhibition with Conjugated Polyelectrolytes. Angewandte Chemie - International Edition, 2007, 46, 7882-7886.	13.8	151
65	Analyteâ€Induced Aggregation of a Waterâ€Soluble Conjugated Polymer for Fluorescent Assay of Oxalic Acid. Macromolecular Rapid Communications, 2007, 28, 1905-1911.	3.9	23
66	Quadruplex-to-Duplex Transition of G-Rich Oligonucleotides Probed by Cationic Water-Soluble Conjugated Polyelectrolytes. Journal of the American Chemical Society, 2006, 128, 6764-6765.	13.7	120
67	Direct Visualization of Enzymatic Cleavage and Oxidative Damage by Hydroxyl Radicals of Single-Stranded DNA with a Cationic Polythiophene Derivative. Journal of the American Chemical Society, 2006, 128, 14972-14976.	13.7	186
68	A Reversible and Highly Selective Fluorescent Sensor for Mercury(II) Using Poly(thiophene)s that Contain Thymine Moieties. Macromolecular Rapid Communications, 2006, 27, 389-392.	3.9	192