Lothar R Schad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4956157/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multi-class texture analysis in colorectal cancer histology. Scientific Reports, 2016, 6, 27988.	3.3	305
2	Nonâ€contrastâ€enhanced perfusion and ventilation assessment of the human lung by means of fourier decomposition in proton MRI. Magnetic Resonance in Medicine, 2009, 62, 656-664.	3.0	260
3	Sodium MRI using a densityâ€adapted 3D radial acquisition technique. Magnetic Resonance in Medicine, 2009, 62, 1565-1573.	3.0	231
4	3D radial projection technique with ultrashort echo times for sodium MRI: Clinical applications in human brain and skeletal muscle. Magnetic Resonance in Medicine, 2007, 57, 74-81.	3.0	166
5	Distribution of Brain Sodium Accumulation Correlates with Disability in Multiple Sclerosis: A Cross-sectional ²³ Na MR Imaging Study. Radiology, 2012, 264, 859-867.	7.3	111
6	Deficient fear extinction memory in posttraumatic stress disorder. Neurobiology of Learning and Memory, 2016, 136, 116-126.	1.9	86
7	3 Tesla Sodium Inversion Recovery Magnetic Resonance Imaging Allows for Improved Visualization of Intracellular Sodium Content Changes in Muscular Channelopathies. Investigative Radiology, 2011, 46, 759-766.	6.2	79
8	Comparison of grey matter volume and thickness for analysing cortical changes in chronic schizophrenia: A matter of surface area, grey/white matter intensity contrast, and curvature. Psychiatry Research - Neuroimaging, 2015, 231, 176-183.	1.8	71
9	Quantitative and Qualitative ²³ Na MR Imaging of the Human Kidneys at 3 T: Before and after a Water Load. Radiology, 2011, 260, 857-865.	7.3	70
10	Myocardial T1-mapping at 3T using saturation-recovery: reference values, precision and comparison with MOLLI. Journal of Cardiovascular Magnetic Resonance, 2016, 18, 84.	3.3	70
11	Magnetic resonance fingerprinting using echoâ€planar imaging: Joint quantification of T ₁ and relaxation times. Magnetic Resonance in Medicine, 2017, 78, 1724-1733.	3.0	55
12	Continuous representation of tumor microvessel density and detection of angiogenic hotspots in histological whole-slide images. Oncotarget, 2015, 6, 19163-19176.	1.8	53
13	Prediction of peripheral nerve stimulation thresholds of MRI gradient coils using coupled electromagnetic and neurodynamic simulations. Magnetic Resonance in Medicine, 2019, 81, 686-701.	3.0	51
14	Diffusion parameter mapping with the combined intravoxel incoherent motion and kurtosis model using artificial neural networks at 3ÂT. NMR in Biomedicine, 2017, 30, e3833.	2.8	49
15	Neural Mechanism of a Sex-Specific Risk Variant for Posttraumatic Stress Disorder in the Type I Receptor of the Pituitary Adenylate Cyclase Activating Polypeptide. Biological Psychiatry, 2015, 78, 840-847.	1.3	47
16	Fully-automated quality assurance in multi-center studies using MRI phantom measurements. Magnetic Resonance Imaging, 2014, 32, 771-780.	1.8	45
17	Predicting Magnetostimulation Thresholds in the Peripheral Nervous System using Realistic Body Models. Scientific Reports, 2017, 7, 5316.	3.3	45
18	Quantitative lung perfusion evaluation using fourier decomposition perfusion MRI. Magnetic Resonance in Medicine, 2014, 72, 558-562.	3.0	43

#	Article	IF	CITATIONS
19	Twoâ€dimensional radial acquisition technique with density adaption in sodium MRI. Magnetic Resonance in Medicine, 2011, 65, 1090-1096.	3.0	42
20	Experimental and mathematical analysis of cAMP nanodomains. PLoS ONE, 2017, 12, e0174856.	2.5	42
21	Quantitative sodium MRI of kidney. NMR in Biomedicine, 2016, 29, 197-205.	2.8	40
22	Increased total sodium concentration in gray matter better explains cognition than atrophy in MS. Neurology, 2017, 88, 289-295.	1.1	40
23	Comparison of automated brain segmentation using a brain phantom and patients with early Alzheimer's dementia or mild cognitive impairment. Psychiatry Research - Neuroimaging, 2015, 233, 299-305.	1.8	39
24	Heterogeneity of acute multiple sclerosis lesions on sodium (²³ Na) MRI. Multiple Sclerosis Journal, 2016, 22, 1040-1047.	3.0	37
25	Xâ€nuclei imaging: Current state, technical challenges, and future directions. Journal of Magnetic Resonance Imaging, 2020, 51, 355-376.	3.4	37
26	Reduction of inhomogeneity effects in triple-quantum-filtered sodium imaging. Journal of Magnetic Resonance, 2010, 202, 239-244.	2.1	36
27	Threeâ€dimensional accurate detection of lung emphysema in rats using ultraâ€short and zero echo time MRI. NMR in Biomedicine, 2015, 28, 1471-1479.	2.8	35
28	Synthesis of CT images from digital body phantoms using CycleGAN. International Journal of Computer Assisted Radiology and Surgery, 2019, 14, 1741-1750.	2.8	35
29	Brain sodium MRI in human epilepsy: Disturbances of ionic homeostasis reflect the organization of pathological regions. NeuroImage, 2017, 157, 173-183.	4.2	31
30	Enhancing the quantification of tissue sodium content by MRI: timeâ€efficient sodium <i>B</i> ₁ mapping at clinical field strengths. NMR in Biomedicine, 2016, 29, 129-136.	2.8	29
31	Time efficient whole-brain coverage with MR Fingerprinting using slice-interleaved echo-planar-imaging. Scientific Reports, 2018, 8, 6667.	3.3	29
32	Sodium MRI of T1 High Signal Intensity in the Dentate Nucleus due to Gadolinium Deposition in Multiple Sclerosis. Journal of Neuroimaging, 2017, 27, 372-375.	2.0	26
33	<i>In vivo</i> chlorineâ€35, sodiumâ€23 and proton magnetic resonance imaging of the rat brain. NMR in Biomedicine, 2010, 23, 592-600.	2.8	24
34	Brain morphology correlates of interindividual differences in conditioned fear acquisition and extinction learning. Brain Structure and Function, 2016, 221, 1927-1937.	2.3	24
35	Quantitative Brain Sodium MRI Depicts Corticospinal Impairment in Amyotrophic Lateral Sclerosis. Radiology, 2019, 292, 422-428.	7.3	24
36	Temporally resolved parametric assessment of Zâ€magnetization recovery (TOPAZ): Dynamic myocardial T ₁ mapping using a cine steadyâ€state lookâ€locker approach. Magnetic Resonance in Medicine, 2018, 79, 2087-2100.	3.0	24

#	Article	IF	CITATIONS
37	Apparent Diffusion Coefficient and Sodium Concentration Measurements in Human Prostate Tissue via Hydrogen-1 and Sodium-23 Magnetic Resonance Imaging in a Clinical Setting at 3 T. Investigative Radiology, 2012, 47, 677-682.	6.2	23
38	An open source software for analysis of dynamic contrast enhanced magnetic resonance images: UMMPerfusion revisited. BMC Medical Imaging, 2016, 16, 7.	2.7	23
39	Dissolved hyperpolarized xenonâ€129 MRI in human kidneys. Magnetic Resonance in Medicine, 2020, 83, 262-270.	3.0	23
40	Renal perfusion in acute kidney injury with DCE-MRI: Deconvolution analysis versus two-compartment filtration model. Magnetic Resonance Imaging, 2014, 32, 781-785.	1.8	22
41	Temporal evolution of acute multiple sclerosis lesions on serial sodium (23Na) MRI. Multiple Sclerosis and Related Disorders, 2019, 29, 48-54.	2.0	22
42	Deep Learning-Based Total Kidney Volume Segmentation in Autosomal Dominant Polycystic Kidney Disease Using Attention, Cosine Loss, and Sharpness Aware Minimization. Diagnostics, 2022, 12, 1159.	2.6	21
43	Investigating potentially salvageable penumbra tissue in an in vivo model of transient ischemic stroke using sodium, diffusion, and perfusion magnetic resonance imaging. BMC Neuroscience, 2016, 17, 82.	1.9	20
44	Non-invasive quantitative pulmonary V/Q imaging using Fourier decomposition MRI at 1.5T. Zeitschrift Fur Medizinische Physik, 2015, 25, 326-332.	1.5	19
45	Functional imaging of acute kidney injury at 3 Tesla: Investigating multiple parameters using DCE-MRI and a two-compartment filtration model. Zeitschrift Fur Medizinische Physik, 2015, 25, 58-65.	1.5	19
46	A double-tuned ¹ H/ ²³ Na resonator allows ¹ H-guided ²³ Na-MRI in ischemic stroke patients in one session. International Journal of Stroke, 2015, 10, 56-61.	5.9	18
47	New Colors for Histology: Optimized Bivariate Color Maps Increase Perceptual Contrast in Histological Images. PLoS ONE, 2015, 10, e0145572.	2.5	18
48	The effect of adipose tissue-derived stem cells in a middle cerebral artery occlusion stroke model depends on their engraftment rate. Stem Cell Research and Therapy, 2017, 8, 96.	5.5	18
49	Cerebral Microbleeds in Murine Amyloid Angiopathy. Stroke, 2017, 48, 2248-2254.	2.0	18
50	Cerebral sodium (23Na) magnetic resonance imaging in patients with migraine — a case-control study. European Radiology, 2019, 29, 7055-7062.	4.5	18
51	Simulation-based deep artifact correction with Convolutional Neural Networks for limited angle artifacts. Zeitschrift Fur Medizinische Physik, 2019, 29, 150-161.	1.5	18
52	Magnetic resonance fingerprinting for simultaneous renal <i>T</i> ₁ and <i>T</i> ₂ [*] mapping in a single breathâ€hold. Magnetic Resonance in Medicine, 2020, 83, 1940-1948.	3.0	18
53	First In Vivo Potassium-39 <formula formulatype="inline"> <tex notation="TeX">\$(^{f) Tj ETQq1 1 0. Coil Cooled to 77 K. IEEE Transactions on Biomedical Engineering, 2014, 61, 334-345.</tex></formula>	.784314 rg 4.2	BT /Overlock 17
54	Non-invasive multiparametric qBOLD approach for robust mapping of the oxygen extraction fraction. Zeitschrift Fur Medizinische Physik, 2014, 24, 231-242.	1.5	16

#	Article	IF	CITATIONS
55	Fast threeâ€dimensional inner volume excitations using parallel transmission and optimized kâ€space trajectories. Magnetic Resonance in Medicine, 2016, 76, 1170-1182.	3.0	16
56	Quantitative arterial spin labelling perfusion measurements in rat models of renal transplantation and acute kidney injury at 3T. Zeitschrift Fur Medizinische Physik, 2017, 27, 39-48.	1.5	16
57	Sodium-23 MRI of whole spine at 3 Tesla using a 5-channel receive-only phased-array and a whole-body transmit resonator. Zeitschrift Fur Medizinische Physik, 2016, 26, 95-100.	1.5	15
58	Color-coded visualization of magnetic resonance imaging multiparametric maps. Scientific Reports, 2017, 7, 41107.	3.3	15
59	Polyphonic sonification of electrocardiography signals for diagnosis of cardiac pathologies. Scientific Reports, 2017, 7, 44549.	3.3	15
60	Oxygen extraction fraction mapping at 3 Tesla using an artificial neural network: A feasibility study. Magnetic Resonance in Medicine, 2018, 79, 890-899.	3.0	15
61	Combining new tools to assess renal function and morphology: a holistic approach to study the effects of aging and a congenital nephron deficit. American Journal of Physiology - Renal Physiology, 2017, 313, F576-F584.	2.7	14
62	Identification of a characteristic vascular belt zone in human colorectal cancer. PLoS ONE, 2017, 12, e0171378.	2.5	14
63	CT and MRI compatibility of flexible 3Dâ€printed materials for soft actuators and robots used in imageâ€guided interventions. Medical Physics, 2019, 46, 5488-5498.	3.0	14
64	Metabolic counterparts of sodium accumulation in multiple sclerosis: A whole brain ²³ Na-MRI and fast ¹ H-MRSI study. Multiple Sclerosis Journal, 2019, 25, 39-47.	3.0	14
65	Evaluation of Sodium (²³ Na) MR-imaging as a Biomarker and Predictor for Neurodegenerative Changes in Patients With Alzheimer's Disease. In Vivo, 2021, 35, 429-435.	1.3	14
66	Generation of annotated multimodal ground truth datasets for abdominal medical image registration. International Journal of Computer Assisted Radiology and Surgery, 2021, 16, 1277-1285.	2.8	14
67	Fast glomerular quantification of whole ex vivo mouse kidneys using Magnetic Resonance Imaging at 9.4 Tesla. Zeitschrift Fur Medizinische Physik, 2016, 26, 54-62.	1.5	13
68	Gaussian signal relaxation around spin echoes: Implications for precise reversible transverse relaxation quantification of pulmonary tissue at 1.5 and 3 Tesla. Magnetic Resonance in Medicine, 2017, 77, 1938-1945.	3.0	13
69	Investigating cardiac stimulation limits of MRI gradient coils using electromagnetic and electrophysiological simulations in human and canine body models. Magnetic Resonance in Medicine, 2021, 85, 1047-1061.	3.0	13
70	Black-blood native T ₁ mapping: Blood signal suppression for reduced partial voluming in the myocardium. Magnetic Resonance in Medicine, 2017, 78, 484-493.	3.0	12
71	Comparison of perfusion models for quantitative T1 weighted DCE-MRI of rectal cancer. Scientific Reports, 2017, 7, 12036.	3.3	12
72	Saturation-Recovery Myocardial T1-Mapping during Systole: Accurate and Robust Quantification in the Presence of Arrhythmia. Scientific Reports, 2018, 8, 5251.	3.3	12

#	Article	IF	CITATIONS
73	Dynamic 23Na MRI - A non-invasive window on neuroglial-vascular mechanisms underlying brain function. NeuroImage, 2019, 184, 771-780.	4.2	12
74	Accelerated white matter lesion analysis based on simultaneous <i>T</i> ₁ and <i>T</i> ₂ ^{â^—} quantification using magnetic resonance fingerprinting and deep learning. Magnetic Resonance in Medicine, 2021, 86, 471-486.	3.0	12
75	Pre-clinical functional Magnetic Resonance Imaging part II: The heart. Zeitschrift Fur Medizinische Physik, 2014, 24, 307-322.	1.5	11
76	Pre-clinical functional Magnetic Resonance Imaging part I: The kidney. Zeitschrift Fur Medizinische Physik, 2014, 24, 286-306.	1.5	11
77	Scan time reduction in 23Na-Magnetic Resonance Imaging using the chemical shift imaging sequence: Evaluation of an iterative reconstruction method. Zeitschrift Fur Medizinische Physik, 2015, 25, 275-286.	1.5	11
78	Perfusion and ventilation filters for Fourier-decomposition MR lung imaging. Zeitschrift Fur Medizinische Physik, 2015, 25, 66-76.	1.5	11
79	Design of a multimodal (1 H/ 23 Na MR/CT) anthropomorphic thorax phantom. Zeitschrift Fur Medizinische Physik, 2017, 27, 124-131.	1.5	11
80	A novel 3D printed mechanical actuator using centrifugal force for magnetic resonance elastography: Initial results in an anthropomorphic prostate phantom. PLoS ONE, 2018, 13, e0205442.	2.5	11
81	Efficient ²³ Na tripleâ€quantum signal imaging on clinical scanners: Cartesian imaging of single and tripleâ€quantum ²³ Na (CRISTINA). Magnetic Resonance in Medicine, 2020, 84, 2412-2428.	3.0	11
82	Freeâ€breathing simultaneous <i>T</i> ₁ , <i>T</i> ₂ , and <i>T</i> ₂ ^{â^—} quantification in the myocardium. Magnetic Resonance in Medicine, 2021, 86, 1226-1240.	3.0	11
83	Thrombolysis in Experimental Cerebral Amyloid Angiopathy and the Risk of Secondary Intracerebral Hemorrhage. Stroke, 2014, 45, 2411-2416.	2.0	10
84	Chlorine and sodium chemical shift imaging during acute stroke in a rat model at 9.4 Tesla. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2014, 27, 71-79.	2.0	10
85	23Na-magnetic resonance imaging of the human lumbar vertebral discs: inÂvivo measurements at 3.0 T in healthy volunteers and patients with low back pain. Spine Journal, 2014, 14, 1343-1350.	1.3	10
86	Tracking protein function with sodium multi quantumÂspectroscopy in a 3D-tissue culture based on microcavity arrays. Scientific Reports, 2017, 7, 3943.	3.3	10
87	Repeatability and reproducibility of cerebral 23Na imaging in healthy subjects. BMC Medical Imaging, 2019, 19, 26.	2.7	10
88	²³ Na Tripleâ€quantum signal of in vitro human liver cells, liposomes, and nanoparticles: Cell viability assessment vs. separation of intra―and extracellular signal. Journal of Magnetic Resonance Imaging, 2019, 50, 435-444.	3.4	10
89	Feasibility study of a double resonant (1H/23Na) abdominal RF setup at 3 T. Zeitschrift Fur Medizinische Physik, 2019, 29, 359-367.	1.5	10
90	Diffusely appearing white matter in multiple sclerosis: Insights from sodium (23Na) MRI. Multiple Sclerosis and Related Disorders, 2021, 49, 102752.	2.0	10

#	Article	IF	CITATIONS
91	Automated Screening for Abdominal Aortic Aneurysm in CT Scans under Clinical Conditions Using Deep Learning. Diagnostics, 2021, 11, 2131.	2.6	10
92	Multistage selfâ€gated lung imaging in small rodents. Magnetic Resonance in Medicine, 2016, 75, 2448-2454.	3.0	9
93	The cellular heat shock response monitored by chemical exchange saturation transfer MRI. Scientific Reports, 2020, 10, 11118.	3.3	9
94	²³ Na MRI in ischemic stroke: Acquisition time reduction using postprocessing with convolutional neural networks. NMR in Biomedicine, 2021, 34, e4474.	2.8	9
95	Desynchronization of Cartesian kâ€space sampling and periodic motion for improved retrospectively selfâ€gated 3D lung MRI using quasiâ€random numbers. Magnetic Resonance in Medicine, 2017, 77, 787-793.	3.0	8
96	Histogram based analysis of lung perfusion of children after congenital diaphragmatic hernia repair. Magnetic Resonance Imaging, 2018, 48, 42-49.	1.8	8
97	Tomosynthesis implementation with adaptive online calibration on clinical C-arm systems. International Journal of Computer Assisted Radiology and Surgery, 2018, 13, 1481-1495.	2.8	8
98	Feasibility study of a double resonant 8-channel 1H/ 8-channel 23Na receive-only head coil at 3 Tesla. Magnetic Resonance Imaging, 2019, 59, 97-104.	1.8	8
99	Characterization of chronic active multiple sclerosis lesions with sodium (²³ Na) magnetic resonance imaging—preliminary observations. European Journal of Neurology, 2021, 28, 2392-2395.	3.3	8
100	End-to-End Deep Learning CT Image Reconstruction for Metal Artifact Reduction. Applied Sciences (Switzerland), 2022, 12, 404.	2.5	8
101	Semi-automatic lung segmentation of DCE-MRI data sets of 2-year old children after congenital diaphragmatic hernia repair: Initial results. Magnetic Resonance Imaging, 2015, 33, 1345-1349.	1.8	7
102	Sodium magnetic resonance imaging using ultra-short echo time sequences with anisotropic resolution and uniform k-space sampling. Magnetic Resonance Imaging, 2015, 33, 319-327.	1.8	7
103	¹⁹ F Oximetry with semifluorinated alkanes. Artificial Cells, Nanomedicine and Biotechnology, 2016, 44, 1861-1866.	2.8	7
104	Feasibility of quantitative MR-perfusion imaging to monitor treatment response after uterine artery embolization (UAE) in symptomatic uterus fibroids. Magnetic Resonance Imaging, 2019, 59, 31-38.	1.8	7
105	A novel approach for a 2D/3D image registration routine for medical tool navigation in minimally invasive vascular interventions. Zeitschrift Fur Medizinische Physik, 2016, 26, 259-269.	1.5	6
106	Partially orthogonal resonators for magnetic resonance imaging. Scientific Reports, 2017, 7, 42347.	3.3	6
107	Simulation, Implementation and Measurement of Defined Sound Fields for Blood–Brain Barrier Opening in Rats. Ultrasound in Medicine and Biology, 2022, 48, 422-436.	1.5	6
108	Statin Therapy and the Development of Cerebral Amyloid Angiopathy—A Rodent in Vivo Approach. International Journal of Molecular Sciences, 2016, 17, 126.	4.1	5

#	Article	IF	CITATIONS
109	Reducing signalâ€toâ€noise ratio degradation due to coil coupling in a receiver array for ³⁵ Cl <scp>MRI</scp> at 9.4ÂT: A comparison of matching and decoupling strategies. Concepts in Magnetic Resonance Part B, 2018, 48B, .	0.7	5
110	Protein conformational changes affect the sodium tripleâ€quantum MR signal. NMR in Biomedicine, 2020, 33, e4367.	2.8	5
111	Artificial Neural Network-Derived Cerebral Metabolic Rate of Oxygen for Differentiating Glioblastoma and Brain Metastasis in MRI: A Feasibility Study. Applied Sciences (Switzerland), 2021, 11, 9928.	2.5	5
112	1D and 2D diffusion pore imaging on a preclinical MR system using adaptive rephasing: Feasibility and pulse sequence comparison. Journal of Magnetic Resonance, 2017, 278, 39-50.	2.1	4
113	Coupled actuators with a mechanically synchronized phase during MR elastography: A phantom feasibility study. Concepts in Magnetic Resonance Part B, 2018, 48B, .	0.7	4
114	Tissue Sodium Concentration within White Matter Correlates with the Extent of Small Vessel Disease. Cerebrovascular Diseases, 2021, 50, 347-355.	1.7	4
115	An anthropomorphic pelvis phantom for MRâ€guided prostate interventions. Magnetic Resonance in Medicine, 2022, 87, 1605-1612.	3.0	4
116	MRI Detection of Changes in Tissue Sodium Concentration in Brain Metastases after Stereotactic Radiosurgery: A Feasibility Study. Journal of Neuroimaging, 2021, 31, 297-305.	2.0	4
117	Acceleration of Magnetic Resonance Fingerprinting Reconstruction Using Denoising and Self-Attention Pyramidal Convolutional Neural Network. Sensors, 2022, 22, 1260.	3.8	4
118	Phaseâ€cycled balanced SSFP imaging for nonâ€contrastâ€enhanced functional lung imaging. Magnetic Resonance in Medicine, 2022, 88, 1764-1774.	3.0	4
119	Risk assessment of copper-containing contraceptives: the impact for women with implanted intrauterine devices during clinical MRI and CT examinations. European Radiology, 2019, 29, 2812-2820.	4.5	3
120	Lesion probability mapping in MS patients using a regression network on MR fingerprinting. BMC Medical Imaging, 2021, 21, 107.	2.7	3
121	Volumetric 23Na Single and Triple-Quantum Imaging at 7T: 3D-CRISTINA. Zeitschrift Fur Medizinische Physik, 2022, 32, 199-208.	1.5	3
122	Development of an abdominal phantom for the validation of an oligometastatic disease diagnosis workflow. Medical Physics, 2022, 49, 4445-4454.	3.0	3
123	Optimized protocol for high resolution functional magnetic resonance imaging at 3T using single-shot echo planar imaging. Journal of Neuroscience Methods, 2015, 239, 170-182.	2.5	2
124	Evaluating the effects of receive-only arrays in specific absorption rate simulations at 3 and 7â€⊤. Magnetic Resonance Imaging, 2018, 53, 7-13.	1.8	2
125	Intracellular Sodium Changes in Cancer Cells Using a Microcavity Array-Based Bioreactor System and Sodium Triple-Quantum MR Signal. Processes, 2020, 8, 1267.	2.8	2
126	Tumor tissue analysis by self organizing maps from combined DCE-/DSC-MRI data. , 2009, , .		1

#	Article	IF	CITATIONS
127	Tracking Cellular Functions by Exploiting the Paramagnetic Properties of Xâ \in Nuclei. , 2016, , .		1
128	Evaluation of stacked resonators to enhance the performance of a surface receive-only array for prostate MRI at 3â€Tesla. Magnetic Resonance Imaging, 2018, 53, 164-172.	1.8	1
129	Deterministic Arterial Input Function selection in DCE-MRI for automation of quantitative perfusion calculation of colorectal cancer. Magnetic Resonance Imaging, 2021, 75, 116-123.	1.8	1
130	Comparison of Time and Frequency Domain Solvers for Magnetic Resonance Coils at Different Field Strengths Using a Single Computational Platform. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 2022, 6, 146-152.	3.4	1
131	Feature-based CBCT self-calibration for arbitrary trajectories. International Journal of Computer Assisted Radiology and Surgery, 2022, 17, 2151-2159.	2.8	1
132	Modeling of cardiac stimulation by externally applied electromagnetic fields. , 2021, , .		0

Modeling of cardiac stimulation by externally applied electromagnetic fields. , 2021, , . 132