
Mostafa Kamal Masud

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4955354/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanoarchitectonics: A New Materials Horizon for Prussian Blue and Its Analogues. Bulletin of the Chemical Society of Japan, 2019, 92, 875-904.	2.0	252
2	Avoiding Pre-Isolation Step in Exosome Analysis: Direct Isolation and Sensitive Detection of Exosomes Using Gold-Loaded Nanoporous Ferric Oxide Nanozymes. Analytical Chemistry, 2019, 91, 3827-3834.	3.2	209
3	Superparamagnetic nanoarchitectures for disease-specific biomarker detection. Chemical Society Reviews, 2019, 48, 5717-5751.	18.7	188
4	Gold-Loaded Nanoporous Ferric Oxide Nanocubes with Peroxidase-Mimicking Activity for Electrocatalytic and Colorimetric Detection of Autoantibody. Analytical Chemistry, 2017, 89, 11005-11013.	3.2	128
5	Nanoarchitecture Frameworks for Electrochemical miRNA Detection. Trends in Biochemical Sciences, 2019, 44, 433-452.	3.7	115
6	Porous nanozymes: the peroxidase-mimetic activity of mesoporous iron oxide for the colorimetric and electrochemical detection of global DNA methylation. Journal of Materials Chemistry B, 2018, 6, 4783-4791.	2.9	107
7	Long-Lived, Transferred Crystalline Silicon Carbide Nanomembranes for Implantable Flexible Electronics. ACS Nano, 2019, 13, 11572-11581.	7.3	101
8	Gold-loaded nanoporous superparamagnetic nanocubes for catalytic signal amplification in detecting miRNA. Chemical Communications, 2017, 53, 8231-8234.	2.2	79
9	RNA Biomarkers: Diagnostic and Prognostic Potentials and Recent Developments of Electrochemical Biosensors. Small Methods, 2017, 1, 1700131.	4.6	79
10	Gold-loaded nanoporous ferric oxide nanocubes for electrocatalytic detection of microRNA at attomolar level. Biosensors and Bioelectronics, 2018, 101, 275-281.	5.3	76
11	Nanoarchitectured peroxidase-mimetic nanozymes: mesoporous nanocrystalline α- or γ-iron oxide?. Journal of Materials Chemistry B, 2019, 7, 5412-5422.	2.9	72
12	Electrochemical biosensing strategies for DNA methylation analysis. Biosensors and Bioelectronics, 2017, 94, 63-73.	5.3	60
13	Autoantibodies as diagnostic and prognostic cancer biomarker: Detection techniques and approaches. Biosensors and Bioelectronics, 2019, 139, 111315.	5.3	53
14	Nanoarchitectonics for Wide Bandgap Semiconductor Nanowires: Toward the Next Generation of Nanoelectromechanical Systems for Environmental Monitoring. Advanced Science, 2020, 7, 2001294.	5.6	48
15	Nanostructured mesoporous gold biosensor for microRNA detection at attomolar level. Biosensors and Bioelectronics, 2020, 168, 112429.	5.3	48
16	Extracellular Vesicle Nanoarchitectonics for Novel Drug Delivery Applications. Small, 2021, 17, e2102220.	5.2	48
17	Gold-loaded nanoporous iron oxide nanocubes: a novel dispersible capture agent for tumor-associated autoantibody analysis in serum. Nanoscale, 2017, 9, 8805-8814.	2.8	44
18	Enhanced Peroxidase Mimetic Activity of Porous Iron Oxide Nanoflakes. ChemNanoMat, 2019, 5, 506-513.	1.5	44

#	Article	IF	CITATIONS
19	A PCR-free electrochemical method for messenger RNA detection in cancer tissue samples. Biosensors and Bioelectronics, 2017, 98, 227-233.	5.3	43
20	Grapheneâ€Oxideâ€Loaded Superparamagnetic Iron Oxide Nanoparticles for Ultrasensitive Electrocatalytic Detection of MicroRNA. ChemElectroChem, 2018, 5, 2488-2495.	1.7	36
21	Hydrogel Nanoarchitectonics: An Evolving Paradigm for Ultrasensitive Biosensing. Small, 2022, 18, .	5.2	31
22	Mesoporous gold–silver alloy films towards amplification-free ultra-sensitive microRNA detection. Journal of Materials Chemistry B, 2020, 8, 9512-9523.	2.9	27
23	Nanoarchitectured superparamagnetic iron oxide-doped mesoporous carbon nanozymes for glucose sensing. Sensors and Actuators B: Chemical, 2022, 366, 131980.	4.0	27
24	Designed Patterning of Mesoporous Metal Films Based on Electrochemical Micelle Assembly Combined with Lithographical Techniques. Small, 2020, 16, e1902934.	5.2	26
25	Quantification of gene-specific DNA methylation in oesophageal cancer via electrochemistry. Analytica Chimica Acta, 2017, 976, 84-93.	2.6	25
26	Detection of FGFR2 : FAM76A Fusion Gene in Circulating Tumor RNA Based on Catalytic Signal Amplification of Graphene Oxideâ€loaded Magnetic Nanoparticles. Electroanalysis, 2018, 30, 2293-2301.	1.5	24
27	Pt-Modulated CuMnO <i>_x</i> Nanosheets as Catalysts for Toluene Oxidation. ACS Applied Nano Materials, 2021, 4, 6637-6647.	2.4	24
28	Wide-Band-Gap Semiconductors for Biointegrated Electronics: Recent Advances and Future Directions. ACS Applied Electronic Materials, 2021, 3, 1959-1981.	2.0	21
29	Nanoporous carbon nitride with a high content of inbuilt N site for the CO2 capture. Journal of Hazardous Materials, 2021, 408, 124843.	6.5	18
30	Sensitive Detection of Motor Neuron Disease Derived Exosomal miRNA Using Electrocatalytic Activity of Gold‣oaded Superparamagnetic Ferric Oxide Nanocubes. ChemElectroChem, 2020, 7, 3459-3467.	1.7	16
31	κ-Carrageenan Gel Modified Mesoporous Gold Chronocoulometric Sensor for Ultrasensitive Detection of MicroRNA. Bulletin of the Chemical Society of Japan, 2022, 95, 198-207.	2.0	10
32	Nanostructured mesoporous gold electrodes detect protein phosphorylation in cancer with electrochemical signal amplification. Analyst, The, 2020, 145, 6639-6648.	1.7	6
33	Synthesis, Characterization and Catalytic Activities of Palladium(II) Nitroaryl Complexes. Journal of Inorganic and Organometallic Polymers and Materials, 2016, 26, 1243-1252.	1.9	5
34	Transparent crystalline cubic SiC-on-glass electrodes enable simultaneous electrochemistry and optical microscopy. Chemical Communications, 2019, 55, 7978-7981.	2.2	5
35	Synthesis, spectroscopic characterization, thermal and luminescent properties of new organosulfur-functionalized platinum(II) bis(alkenylarylalkynyl) complexes. Journal of Organometallic Chemistry, 2016, 818, 185-194.	0.8	4
36	AC/DC magnetic device for safe medical use of potentially harmful magnetic nanocarriers. Journal of Hazardous Materials, 2021, 409, 124918.	6.5	4

#	Article	IF	CITATIONS
37	Daylight-Driven Rechargeable TiO2 Nanocatalysts Suppress Wheat Blast Caused by <i>Magnaporthe oryzae Triticum</i> . Bulletin of the Chemical Society of Japan, 2022, 95, 1263-1271.	2.0	4
38	Construction of AC/DC magnetic syringe device for stimulated drug release, injection and ejection of nanocarriers and testing cytotoxicity in vitro. MethodsX, 2021, 8, 101312.	0.7	2