Sean P Berglund

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/495364/publications.pdf

Version: 2024-02-01

257450 454955 2,917 31 24 30 h-index citations g-index papers 32 32 32 4206 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Enhancing Visible Light Photo-oxidation of Water with TiO ₂ Nanowire Arrays via Cotreatment with H ₂ and NH ₃ : Synergistic Effects between Ti ³⁺ and N. Journal of the American Chemical Society, 2012, 134, 3659-3662.	13.7	585
2	Comprehensive Evaluation of CuBi ₂ O ₄ as a Photocathode Material for Photoelectrochemical Water Splitting. Chemistry of Materials, 2016, 28, 4231-4242.	6.7	271
3	Photoelectrochemical Oxidation of Water Using Nanostructured BiVO ₄ Films. Journal of Physical Chemistry C, 2011, 115, 3794-3802.	3.1	230
4	Incorporation of Mo and W into nanostructured BiVO4 films for efficient photoelectrochemical water oxidation. Physical Chemistry Chemical Physics, 2012, 14, 7065.	2.8	211
5	Gradient Self-Doped CuBi ₂ O ₄ with Highly Improved Charge Separation Efficiency. Journal of the American Chemical Society, 2017, 139, 15094-15103.	13.7	187
6	Synthesis of BiVO ₄ nanoflake array films for photoelectrochemical water oxidation. Journal of Materials Chemistry A, 2014, 2, 9371-9379.	10.3	139
7	Nanostructured Bi2S3/WO3 heterojunction films exhibiting enhanced photoelectrochemical performance. Journal of Materials Chemistry A, 2013, 1, 12826.	10.3	134
8	Recent developments in complex metal oxide photoelectrodes. Journal Physics D: Applied Physics, 2017, 50, 193002.	2.8	127
9	Evaluating Electrocatalysts for the Hydrogen Evolution Reaction Using Bipolar Electrode Arrays: Biand Trimetallic Combinations of Co, Fe, Ni, Mo, and W. ACS Catalysis, 2014, 4, 1332-1339.	11.2	83
10	Spray pyrolysis of CuBi ₂ O ₄ photocathodes: improved solution chemistry for highly homogeneous thin films. Journal of Materials Chemistry A, 2017, 5, 12838-12847.	10.3	82
11	p-Si/W ₂ C and p-Si/W ₂ C/Pt Photocathodes for the Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2014, 136, 1535-1544.	13.7	77
12	Screening of transition and post-transition metals to incorporate into copper oxide and copper bismuth oxide for photoelectrochemical hydrogen evolution. Physical Chemistry Chemical Physics, 2013, 15, 4554.	2.8	74
13	Parallel Screening of Electrocatalyst Candidates Using Bipolar Electrochemistry. Analytical Chemistry, 2013, 85, 2493-2499.	6.5	70
14	Cu:NiO as a hole-selective back contact to improve the photoelectrochemical performance of CuBi ₂ O ₄ thin film photocathodes. Journal of Materials Chemistry A, 2019, 7, 9183-9194.	10.3	70
15	Antimony-Doped Tin Oxide Nanorods as a Transparent Conducting Electrode for Enhancing Photoelectrochemical Oxidation of Water by Hematite. ACS Applied Materials & Diterfaces, 2014, 6, 5494-5499.	8.0	63
16	Revealing the Performance-Limiting Factors in $\hat{l}\pm$ -SnWO ₄ Photoanodes for Solar Water Splitting. Chemistry of Materials, 2018, 30, 8322-8331.	6.7	58
17	Selective decomposition of formic acid on molybdenum carbide: A new reaction pathway. Journal of Catalysis, 2010, 269, 33-43.	6.2	55
18	Low Temperature Synthesis and Characterization of Nanocrystalline Titanium Carbide with Tunable Porous Architectures. Chemistry of Materials, 2010, 22, 319-329.	6.7	54

#	Article	IF	CITATIONS
19	Assessment of a W:BiVO ₄ –CuBi ₂ O ₄ Tandem Photoelectrochemical Cell for Overall Solar Water Splitting. ACS Applied Materials & Samp; Interfaces, 2020, 12, 13959-13970.	8.0	50
20	Assessing the Suitability of Iron Tungstate (Fe ₂ WO ₆) as a Photoelectrode Material for Water Oxidation. Journal of Physical Chemistry C, 2017, 121, 153-160.	3.1	49
21	Evaluation of Copper Vanadate (\hat{l}^2 -Cu ₂ V ₂ O ₇) as a Photoanode Material for Photoelectrochemical Water Oxidation. Chemistry of Materials, 2020, 32, 2408-2419.	6.7	42
22	Chemical bath deposition of vertically aligned TiO2 nanoplatelet arrays for solar energy conversion applications. Journal of Materials Chemistry A, 2013, 1, 4307.	10.3	38
23	Reactive Ballistic Deposition of Nanostructured Model Materials for Electrochemical Energy Conversion and Storage. Accounts of Chemical Research, 2012, 45, 434-443.	15.6	36
24	Synthesis and Characterization of V-Doped \hat{l}^2 -In ₂ S ₃ Thin Films on FTO Substrates. Journal of Physical Chemistry C, 2016, 120, 28753-28761.	3.1	31
25	Revealing the relationship between photoelectrochemical performance and interface hole trapping in CuBi ₂ O ₄ heterojunction photoelectrodes. Chemical Science, 2020, 11, 11195-11204.	7.4	26
26	Investigation of 35 Elements as Single Metal Oxides, Mixed Metal Oxides, or Dopants for Titanium Dioxide for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2013, 117, 25248-25258.	3.1	17
27	Elucidating the optical, electronic, and photoelectrochemical properties of p-type copper vanadate (p-Cu ₅ V ₂ O ₁₀) photocathodes. Journal of Materials Chemistry A, 2020, 8, 12538-12547.	10.3	17
28	Improvement of Solar Energy Conversion with Nbâ€Incorporated TiO ₂ Hierarchical Microspheres. ChemPhysChem, 2013, 14, 2270-2276.	2.1	11
29	Multinary Metal Oxide Photoelectrodes. , 2016, , 355-391.		11
30	Absorption Enhancement for Ultrathin Solar Fuel Devices with Plasmonic Gratings. ACS Applied Energy Materials, 2018, 1, 5810-5815.	5.1	10
31	Planar and Nanostructured nâ€Si/Metalâ€Oxide/WO ₃ /BiVO ₄ Monolithic Tandem Devices for Unassisted Solar Water Splitting. Advanced Energy and Sustainability Research, 2020, 1, 2000037.	5 . 8	9