David W Raible

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4953557/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Losing the license to regenerate hair cells. Developmental Cell, 2021, 56, 2402-2404.	3.1	Ο
2	The Mechanosensory Lateral Line System. , 2020, , 245-253.		1
3	Damaging de novo missense variants in <i>EEF1A2</i> lead to a developmental and degenerative epilepticâ€dyskinetic encephalopathy. Human Mutation, 2020, 41, 1263-1279.	1.1	24
4	Chloroquine kills hair cells in zebrafish lateral line and murine cochlear cultures: Implications for ototoxicity. Hearing Research, 2020, 395, 108019.	0.9	22
5	Fate plasticity and reprogramming in genetically distinct populations of <i>Danio</i> leucophores. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11806-11811.	3.3	49
6	Water Waves to Sound Waves: Using Zebrafish to Explore Hair Cell Biology. JARO - Journal of the Association for Research in Otolaryngology, 2019, 20, 1-19.	0.9	44
7	ORC-13661 protects sensory hair cells from aminoglycoside and cisplatin ototoxicity. JCI Insight, 2019, 4, .	2.3	52
8	Distinct progenitor populations mediate regeneration in the zebrafish lateral line. ELife, 2019, 8, .	2.8	45
9	Phenotypic Optimization of Urea–Thiophene Carboxamides To Yield Potent, Well Tolerated, and Orally Active Protective Agents against Aminoglycoside-Induced Hearing Loss. Journal of Medicinal Chemistry, 2018, 61, 84-97.	2.9	58
10	The role of retrograde intraflagellar transport genes in aminoglycoside-induced hair cell death. Biology Open, 2018, 8, .	0.6	6
11	The Inner Ear Heat Shock Transcriptional Signature Identifies Compounds That Protect Against Aminoglycoside Ototoxicity. Frontiers in Cellular Neuroscience, 2018, 12, 445.	1.8	14
12	Noise-Induced Hypersensitization of the Acoustic Startle Response in Larval Zebrafish. JARO - Journal of the Association for Research in Otolaryngology, 2018, 19, 741-752.	0.9	17
13	De novo variants in GREB1L are associated with non-syndromic inner ear malformations and deafness. Human Genetics, 2018, 137, 459-470.	1.8	24
14	Cumulative mitochondrial activity correlates with ototoxin susceptibility in zebrafish mechanosensory hair cells. ELife, 2018, 7, .	2.8	30
15	Defective <i>adgra2</i> (<i>gpr124</i>) splicing and function in zebrafish <i>ouchless</i> mutants. Development (Cambridge), 2017, 144, 8-11.	1.2	8
16	The <i>occhiolino (occ)</i> mutant Zebrafish, a model for development of the optical function in the biological lens. Developmental Dynamics, 2017, 246, 915-924.	0.8	7
17	Ca ²⁺ -Permeable AMPARs Mediate Glutamatergic Transmission and Excitotoxic Damage at the Hair Cell Ribbon Synapse. Journal of Neuroscience, 2017, 37, 6162-6175.	1.7	61
18	An ancient neurotrophin receptor code; a single Runx/Cbfl² complex determines somatosensory neuron fate specification in zebrafish. PLoS Genetics, 2017, 13, e1006884.	1.5	12

#	Article	IF	CITATIONS
19	Mitochondrial calcium uptake underlies ROS generation during aminoglycoside-induced hair cell death. Journal of Clinical Investigation, 2016, 126, 3556-3566.	3.9	133
20	Cilia-Associated Genes Play Differing Roles in Aminoglycoside-Induced Hair Cell Death in Zebrafish. G3: Genes, Genomes, Genetics, 2016, 6, 2225-2235.	0.8	22
21	Innervation regulates synaptic ribbons in lateral line mechanosensory hair cells. Journal of Cell Science, 2016, 129, 2250-60.	1.2	26
22	Fluorescent aminoglycosides reveal intracellular trafficking routes in mechanosensory hair cells. Journal of Clinical Investigation, 2016, 127, 472-486.	3.9	67
23	Innervation regulates synaptic ribbons in lateral line mechanosensory hair cells. Development (Cambridge), 2016, 143, e1.2-e1.2.	1.2	2
24	Identification of Small Molecule Inhibitors of Cisplatin-Induced Hair Cell Death. Otology and Neurotology, 2015, 36, 519-525.	0.7	33
25	Using the zebrafish lateral line to uncover novel mechanisms of action and prevention in drug-induced hair cell death. Frontiers in Cellular Neuroscience, 2015, 9, 46.	1.8	30
26	Modeling Nociception in Zebrafish: A Way Forward for Unbiased Analgesic Discovery. PLoS ONE, 2015, 10, e0116766.	1.1	66
27	Reck enables cerebrovascular development by promoting canonical Wnt signaling. Development (Cambridge), 2015, 143, 147-59.	1.2	47
28	There and back again: development and regeneration of the zebrafish lateral line system. Wiley Interdisciplinary Reviews: Developmental Biology, 2015, 4, 1-16.	5.9	84
29	Robust regeneration of adult zebrafish lateral line hair cells reflects continued precursor pool maintenance. Developmental Biology, 2015, 402, 229-238.	0.9	65
30	The zebrafish <i>merovingian</i> mutant reveals a role for pH regulation in hair cell toxicity and function. DMM Disease Models and Mechanisms, 2014, 7, 847-856.	1.2	47
31	A targeted gene expression system using the tryptophan repressor in zebrafish shows no silencing in subsequent generations. Development (Cambridge), 2014, 141, 1167-1174.	1.2	26
32	ER–Mitochondrial Calcium Flow Underlies Vulnerability of Mechanosensory Hair Cells to Damage. Journal of Neuroscience, 2014, 34, 9703-9719.	1.7	100
33	Neural Crest Cells and Peripheral Nervous System Development. , 2014, , 255-286.		5
34	Bax, Bcl2, and p53 Differentially Regulate Neomycin- and Gentamicin-Induced Hair Cell Death in the Zebrafish Lateral Line. JARO - Journal of the Association for Research in Otolaryngology, 2013, 14, 645-659.	0.9	99
35	Auditory sensitivity of larval zebrafish (<i>Danio rerio</i>) measured using a behavioral prepulse inhibition assay. Journal of Experimental Biology, 2013, 216, 3504-3513.	0.8	91
36	Modulation of dorsal root ganglion development by ErbB signaling and the scaffold protein Sorbs3. Development (Cambridge), 2013, 140, 3986-3996.	1.2	10

#	Article	IF	CITATIONS
37	Fish in a dish: drug discovery for hearing habilitation. Drug Discovery Today: Disease Models, 2013, 10, e23-e29.	1.2	42
38	Profiling drug-induced cell death pathways in the zebrafish lateral line. Apoptosis: an International Journal on Programmed Cell Death, 2013, 18, 393-408.	2.2	73
39	Disruption of Intracellular Calcium Regulation Is Integral to Aminoglycoside-Induced Hair Cell Death. Journal of Neuroscience, 2013, 33, 7513-7525.	1.7	75
40	Hearing Loss, Protection, and Regeneration in the Larval Zebrafish Lateral Line. Springer Handbook of Auditory Research, 2013, , 313-347.	0.3	5
41	Functional Mechanotransduction Is Required for Cisplatin-Induced Hair Cell Death in the Zebrafish Lateral Line. Journal of Neuroscience, 2013, 33, 4405-4414.	1.7	80
42	The Zebrafish Ortholog of TRPV1 Is Required for Heat-Induced Locomotion. Journal of Neuroscience, 2013, 33, 5249-5260.	1.7	128
43	Loss of Slc4a1b Chloride/Bicarbonate Exchanger Function Protects Mechanosensory Hair Cells from Aminoglycoside Damage in the Zebrafish Mutant persephone. PLoS Genetics, 2012, 8, e1002971.	1.5	21
44	Identification of Modulators of Hair Cell Regeneration in the Zebrafish Lateral Line. Journal of Neuroscience, 2012, 32, 3516-3528.	1.7	76
45	Quinoline Ring Derivatives Protect Against Aminoglycoside-Induced Hair Cell Death in the Zebrafish Lateral Line. JARO - Journal of the Association for Research in Otolaryngology, 2012, 13, 759-770.	0.9	30
46	The metalloproteinase inhibitor Reck is essential for zebrafish DRG development. Development (Cambridge), 2012, 139, 1141-1152.	1.2	54
47	Screening for chemicals that affect hair cell death and survival in the zebrafish lateral line. Hearing Research, 2012, 288, 58-66.	0.9	57
48	Screen of FDA-approved drug library reveals compounds that protect hair cells from aminoglycosides and cisplatin. Hearing Research, 2012, 294, 153-165.	0.9	68
49	Postembryonic neuronal addition in Zebrafish dorsal root ganglia is regulated by Notch signaling. Neural Development, 2012, 7, 23.	1.1	48
50	Proliferative Regeneration of Zebrafish Lateral Line Hair Cells after Different Ototoxic Insults. PLoS ONE, 2012, 7, e47257.	1.1	67
51	Specification of neural crest into sensory neuron and melanocyte lineages. Developmental Biology, 2012, 366, 55-63.	0.9	56
52	Rheotaxis in Larval Zebrafish Is Mediated by Lateral Line Mechanosensory Hair Cells. PLoS ONE, 2012, 7, e29727.	1,1	152
53	Lef1 is required for progenitor cell identity in the zebrafish lateral line primordium. Development (Cambridge), 2011, 138, 3921-3930.	1.2	53
54	Drug screening for hearing loss: Using the zebrafish lateral line to screen for drugs that prevent and cause hearing loss. Drug Discovery Today, 2010, 15, 265-271.	3.2	92

#	Article	IF	CITATIONS
55	UDP xylose synthase 1 is required for morphogenesis and histogenesis of the craniofacial skeleton. Developmental Biology, 2010, 341, 400-415.	0.9	51
56	Interplay between Foxd3 and Mitf regulates cell fate plasticity in the zebrafish neural crest. Developmental Biology, 2010, 344, 107-118.	0.9	148
57	Chemical Screening for Hair Cell Loss and Protection in the Zebrafish Lateral Line. Zebrafish, 2010, 7, 3-11.	0.5	110
58	Signaling Pathways Regulating Zebrafish Lateral Line Development. Current Biology, 2009, 19, R381-R386.	1.8	125
59	Feathers and fins: Non-mammalian models for hair cell regeneration. Brain Research, 2009, 1277, 12-23.	1.1	135
60	Kit and foxd3 genetically interact to regulate melanophore survival in zebrafish. Developmental Dynamics, 2009, 238, 875-886.	0.8	13
61	Identification of FDA-Approved Drugs and Bioactives that Protect Hair Cells in the Zebrafish (Danio) Tj ETQq1 I in Otolaryngology, 2009, 10, 191-203.	0.784314 0.9	rgBT /Overloc 108
62	Mechanisms for reaching the differentiated state: Insights from neural crest-derived melanocytes. Seminars in Cell and Developmental Biology, 2009, 20, 105-110.	2.3	29
63	Foxd3 controls melanophore specification in the zebrafish neural crest by regulation of Mitf. Developmental Biology, 2009, 332, 408-417.	0.9	98
64	Response of mechanosensory hair cells of the zebrafish lateral line to aminoglycosides reveals distinct cell death pathways. Hearing Research, 2009, 253, 32-41.	0.9	108
65	Extracellular divalent cations modulate aminoglycoside-induced hair cell death in the zebrafish lateral line. Hearing Research, 2009, 253, 42-51.	0.9	90
66	Using the Zebrafish Lateral Line to Screen for Ototoxicity. JARO - Journal of the Association for Research in Otolaryngology, 2008, 9, 178-190.	0.9	174
67	CC2D2A Is Mutated in Joubert Syndrome and Interacts with the Ciliopathy-Associated Basal Body Protein CEP290. American Journal of Human Genetics, 2008, 83, 559-571.	2.6	202
68	FGF-Dependent Mechanosensory Organ Patterning in Zebrafish. Science, 2008, 320, 1774-1777.	6.0	175
69	Zebrafish Dorsal Root Ganglia Neural Precursor Cells Adopt a Glial Fate in the Absence of <i>Neurogenin1 </i> . Journal of Neuroscience, 2008, 28, 12558-12569.	1.7	82
70	Notch Signaling Regulates the Extent of Hair Cell Regeneration in the Zebrafish Lateral Line. Journal of Neuroscience, 2008, 28, 2261-2273.	1.7	227
71	Identification of Genetic and Chemical Modulators of Zebrafish Mechanosensory Hair Cell Death. PLoS Genetics, 2008, 4, e1000020.	1.5	193
72	Specification of epibranchial placodes in zebrafish. Development (Cambridge), 2007, 134, 611-623.	1.2	106

#	Article	IF	CITATIONS
73	Cisplatin-induced hair cell loss in zebrafish (Danio rerio) lateral line. Hearing Research, 2007, 233, 46-53.	0.9	139
74	Ultrastructural analysis of aminoglycoside-induced hair cell death in the zebrafish lateral line reveals an early mitochondrial response. Journal of Comparative Neurology, 2007, 502, 522-543.	0.9	104
75	Specification of Sensory Neuron Cell Fate from the Neural Crest. , 2006, 589, 170-180.		30
76	Lateral line hair cell maturation is a determinant of aminoglycoside susceptibility in zebrafish (Danio) Tj ETQq0 0 C) rgBT /Ove 0.9	erlock 10 Tf
77	Zebrafish Foxd3 is required for development of a subset of neural crest derivatives. Developmental Biology, 2006, 290, 92-104.	0.9	144
78	FGF is essential for both condensation and mesenchymal–epithelial transition stages of pronephric kidney tubule development. Developmental Biology, 2006, 297, 103-117.	0.9	51
79	Development of the neural crest: achieving specificity in regulatory pathways. Current Opinion in Cell Biology, 2006, 18, 698-703.	2.6	55
80	lessen encodes a zebrafish trap100 required for enteric nervous system development. Development (Cambridge), 2006, 133, 395-406.	1.2	47
81	Repulsive Interactions Shape the Morphologies and Functional Arrangement of Zebrafish Peripheral Sensory Arbors. Current Biology, 2005, 15, 804-814.	1.8	152
82	Endoderm-derived Fgf3 is necessary and sufficient for inducing neurogenesis in the epibranchial placodes in zebrafish. Development (Cambridge), 2005, 132, 3717-3730.	1.2	63
83	Regulation of Latent Sensory Hair Cell Precursors by Glia in the Zebrafish Lateral Line. Neuron, 2005, 45, 69-80.	3.8	119
84	Reiterated Wnt and BMP signals in neural crest development. Seminars in Cell and Developmental Biology, 2005, 16, 673-682.	2.3	57
85	Roles for GFRα1 receptors in zebrafish enteric nervous system development. Development (Cambridge), 2004, 131, 241-249.	1.2	109
86	Reiterated Wnt signaling during zebrafish neural crest development. Development (Cambridge), 2004, 131, 1299-1308.	1.2	241
87	Zebrafish rx3 and mab21l2 are required during eye morphogenesis. Developmental Biology, 2004, 270, 336-349.	0.9	73
88	Signals derived from the underlying mesoderm are dispensable for zebrafish neural crest induction. Developmental Biology, 2004, 276, 16-30.	0.9	45
89	Neomycin-Induced Hair Cell Death and Rapid Regeneration in the Lateral Line of Zebrafish (Danio rerio) Tj ETQq1	1 0.78431 0.9	.4.rgBT /Ove 415
90	Developmental differences in susceptibility to neomycin-induced hair cell death in the lateral line	0.0	100

Developmental differences in susceptibility to neomycin-induced hair cell de neuromasts of zebrafish (Danio rerio). Hearing Research, 2003, 186, 47-56. 90

0.9 100

#	Article	IF	CITATIONS
91	Hedgehog signaling is directly required for the development of zebrafish dorsal root ganglia neurons. Development (Cambridge), 2003, 130, 5351-5362.	1.2	65
92	Transcriptional regulation of mitfa accounts for the sox10 requirement in zebrafish melanophore development. Development (Cambridge), 2003, 130, 2809-2818.	1.2	151
93	Neurogenin1 Defines Zebrafish Cranial Sensory Ganglia Precursors. Developmental Biology, 2002, 251, 45-58.	0.9	206
94	Zebrafish Neuromast Hair Cell Nuclei are Labeled in Vivo by Uptake of Monomeric Cyanine Dyes. Microscopy and Microanalysis, 2002, 8, 1058-1059.	0.2	0
95	Functional Analysis of Zebrafish GDNF. Developmental Biology, 2001, 231, 420-435.	0.9	84
96	Duplicate mitf Genes in Zebrafish: Complementary Expression and Conservation of Melanogenic Potential. Developmental Biology, 2001, 237, 333-344.	0.9	173
97	Organization of the lateral line system in embryonic zebrafish. , 2000, 421, 189-198.		268
98	Environmental signals and cell fate specification in premigratory neural crest. BioEssays, 2000, 22, 708-716.	1.2	100
99	Organization of the lateral line system in embryonic zebrafish. Journal of Comparative Neurology, 2000, 421, 189-198.	0.9	3
100	Environmental signals and cell fate specification in premigratory neural crest. BioEssays, 2000, 22, 708-716.	1.2	1
101	Direct regulation of <i>nacre</i> , a zebrafish <i>MITF</i> homolog required for pigment cell formation, by the Wnt pathway. Genes and Development, 2000, 14, 158-162.	2.7	221
102	Maternal and embryonic expression of zebrafish lef1. Mechanisms of Development, 1999, 86, 147-150.	1.7	53
103	Specification of Neural Crest Cell Fate in the Embryonic Zebrafish. , 1999, , 415-425.		0
104	Control of neural crest cell fate by the Wnt signalling pathway. Nature, 1998, 396, 370-373.	13.7	452
105	Chapter 4 Early Pressure Screens. Methods in Cell Biology, 1998, , 71-86.	0.5	41
106	Expression ofc-ret in the zebrafish embryo: Potential roles in motoneuronal development. Journal of Neurobiology, 1997, 33, 749-768.	3.7	75
107	Screen for mutations affecting development of zebrafish neural crest. Genesis, 1996, 18, 11-17.	3.3	114
108	Screen for mutations affecting development of zebrafish neural crest. Genesis, 1996, 18, 11-17.	3.3	2

#	Article	IF	CITATIONS
109	Lateral specification of cell fate during vertebrate development. Current Opinion in Genetics and Development, 1995, 5, 444-449.	1.5	9
110	Rin, a novel cell-surface protein that labels reticular neurons early in chick neurogenesis. Journal of Neurobiology, 1994, 25, 395-405.	3.7	2
111	Collapsin: A protein in brain that induces the collapse and paralysis of neuronal growth cones. Cell, 1993, 75, 217-227.	13.5	1,087
112	Segregation and early dispersal of neural crest cells in the embryonic zebrafish. Developmental Dynamics, 1992, 195, 29-42.	0.8	194
113	Regulation of Oligodendrocyte Development by Insulin-Like Growth Factors and Cyclic Nucleotides. Annals of the New York Academy of Sciences, 1990, 605, 101-109.	1.8	57
114	Regulation of Oligodendrocyte Development by Insulin-Like Growth Factors and Cyclic AMP. , 1990, , 281-292.		2
115	Cyclic AMP regulates the rate of differentiation of oligodendrocytes without changing the lineage commitment of their progenitors. Developmental Biology, 1989, 133, 437-446.	0.9	101
116	An in vivo Biomarker to Characterize Ototoxic Compounds and Novel Protective Therapeutics. Frontiers in Molecular Neuroscience, 0, 15, .	1.4	0