David W Raible

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4953557/publications.pdf

Version: 2024-02-01

116 papers 10,315 citations

56 h-index 96 g-index

125 all docs

125 docs citations

125 times ranked

7517 citing authors

#	Article	IF	CITATIONS
1	Collapsin: A protein in brain that induces the collapse and paralysis of neuronal growth cones. Cell, 1993, 75, 217-227.	13.5	1,087
2	Control of neural crest cell fate by the Wnt signalling pathway. Nature, 1998, 396, 370-373.	13.7	452
3	Neomycin-Induced Hair Cell Death and Rapid Regeneration in the Lateral Line of Zebrafish (Danio rerio) Tj ETQq1	10.78431	4 rgBT /Over 415
4	Organization of the lateral line system in embryonic zebrafish. , 2000, 421, 189-198.		268
5	Reiterated Wnt signaling during zebrafish neural crest development. Development (Cambridge), 2004, 131, 1299-1308.	1.2	241
6	Notch Signaling Regulates the Extent of Hair Cell Regeneration in the Zebrafish Lateral Line. Journal of Neuroscience, 2008, 28, 2261-2273.	1.7	227
7	Direct regulation of <i>nacre</i> , a zebrafish <i>MITF</i> homolog required for pigment cell formation, by the Wnt pathway. Genes and Development, 2000, 14, 158-162.	2.7	221
8	Neurogenin1 Defines Zebrafish Cranial Sensory Ganglia Precursors. Developmental Biology, 2002, 251, 45-58.	0.9	206
9	CC2D2A Is Mutated in Joubert Syndrome and Interacts with the Ciliopathy-Associated Basal Body Protein CEP290. American Journal of Human Genetics, 2008, 83, 559-571.	2.6	202
10	Segregation and early dispersal of neural crest cells in the embryonic zebrafish. Developmental Dynamics, 1992, 195, 29-42.	0.8	194
11	Identification of Genetic and Chemical Modulators of Zebrafish Mechanosensory Hair Cell Death. PLoS Genetics, 2008, 4, e1000020.	1.5	193
12	FGF-Dependent Mechanosensory Organ Patterning in Zebrafish. Science, 2008, 320, 1774-1777.	6.0	175
13	Using the Zebrafish Lateral Line to Screen for Ototoxicity. JARO - Journal of the Association for Research in Otolaryngology, 2008, 9, 178-190.	0.9	174
14	Duplicate mitf Genes in Zebrafish: Complementary Expression and Conservation of Melanogenic Potential. Developmental Biology, 2001, 237, 333-344.	0.9	173
15	Repulsive Interactions Shape the Morphologies and Functional Arrangement of Zebrafish Peripheral Sensory Arbors. Current Biology, 2005, 15, 804-814.	1.8	152
16	Rheotaxis in Larval Zebrafish Is Mediated by Lateral Line Mechanosensory Hair Cells. PLoS ONE, 2012, 7, e29727.	1.1	152
17	Transcriptional regulation of mitfa accounts for the sox10 requirement in zebrafish melanophore development. Development (Cambridge), 2003, 130, 2809-2818.	1.2	151
18	Interplay between Foxd3 and Mitf regulates cell fate plasticity in the zebrafish neural crest. Developmental Biology, 2010, 344, 107-118.	0.9	148

#	Article	IF	CITATIONS
19	Zebrafish Foxd3 is required for development of a subset of neural crest derivatives. Developmental Biology, 2006, 290, 92-104.	0.9	144
20	Cisplatin-induced hair cell loss in zebrafish (Danio rerio) lateral line. Hearing Research, 2007, 233, 46-53.	0.9	139
21	Feathers and fins: Non-mammalian models for hair cell regeneration. Brain Research, 2009, 1277, 12-23.	1.1	135
22	Mitochondrial calcium uptake underlies ROS generation during aminoglycoside-induced hair cell death. Journal of Clinical Investigation, 2016, 126, 3556-3566.	3.9	133
23	The Zebrafish Ortholog of TRPV1 Is Required for Heat-Induced Locomotion. Journal of Neuroscience, 2013, 33, 5249-5260.	1.7	128
24	Lateral line hair cell maturation is a determinant of aminoglycoside susceptibility in zebrafish (Danio) Tj ETQq0 0	0 rgBT/Ov	erlock 10 Tf !
25	Signaling Pathways Regulating Zebrafish Lateral Line Development. Current Biology, 2009, 19, R381-R386.	1.8	125
26	Regulation of Latent Sensory Hair Cell Precursors by Glia in the Zebrafish Lateral Line. Neuron, 2005, 45, 69-80.	3.8	119
27	Screen for mutations affecting development of zebrafish neural crest. Genesis, 1996, 18, 11-17.	3.3	114
28	Chemical Screening for Hair Cell Loss and Protection in the Zebrafish Lateral Line. Zebrafish, 2010, 7, 3-11.	0.5	110
29	Roles for GFRα1 receptors in zebrafish enteric nervous system development. Development (Cambridge), 2004, 131, 241-249.	1.2	109
30	Identification of FDA-Approved Drugs and Bioactives that Protect Hair Cells in the Zebrafish (Danio) Tj ETQq0 0 0 in Otolaryngology, 2009, 10, 191-203.	rgBT /Ove 0.9	erlock 10 Tf 50 108
31	Response of mechanosensory hair cells of the zebrafish lateral line to aminoglycosides reveals distinct cell death pathways. Hearing Research, 2009, 253, 32-41.	0.9	108
32	Specification of epibranchial placodes in zebrafish. Development (Cambridge), 2007, 134, 611-623.	1.2	106
33	Ultrastructural analysis of aminoglycoside-induced hair cell death in the zebrafish lateral line reveals an early mitochondrial response. Journal of Comparative Neurology, 2007, 502, 522-543.	0.9	104
34	Cyclic AMP regulates the rate of differentiation of oligodendrocytes without changing the lineage commitment of their progenitors. Developmental Biology, 1989, 133, 437-446.	0.9	101
35	Environmental signals and cell fate specification in premigratory neural crest. BioEssays, 2000, 22, 708-716.	1.2	100
36	Developmental differences in susceptibility to neomycin-induced hair cell death in the lateral line neuromasts of zebrafish (Danio rerio). Hearing Research, 2003, 186, 47-56.	0.9	100

#	Article	IF	Citations
37	ER–Mitochondrial Calcium Flow Underlies Vulnerability of Mechanosensory Hair Cells to Damage. Journal of Neuroscience, 2014, 34, 9703-9719.	1.7	100
38	Bax, Bcl2, and p53 Differentially Regulate Neomycin- and Gentamicin-Induced Hair Cell Death in the Zebrafish Lateral Line. JARO - Journal of the Association for Research in Otolaryngology, 2013, 14, 645-659.	0.9	99
39	Foxd3 controls melanophore specification in the zebrafish neural crest by regulation of Mitf. Developmental Biology, 2009, 332, 408-417.	0.9	98
40	Drug screening for hearing loss: Using the zebrafish lateral line to screen for drugs that prevent and cause hearing loss. Drug Discovery Today, 2010, 15, 265-271.	3.2	92
41	Auditory sensitivity of larval zebrafish (<i>Danio rerio</i>) measured using a behavioral prepulse inhibition assay. Journal of Experimental Biology, 2013, 216, 3504-3513.	0.8	91
42	Extracellular divalent cations modulate aminoglycoside-induced hair cell death in the zebrafish lateral line. Hearing Research, 2009, 253, 42-51.	0.9	90
43	Functional Analysis of Zebrafish GDNF. Developmental Biology, 2001, 231, 420-435.	0.9	84
44	There and back again: development and regeneration of the zebrafish lateral line system. Wiley Interdisciplinary Reviews: Developmental Biology, 2015, 4, 1-16.	5.9	84
45	Zebrafish Dorsal Root Ganglia Neural Precursor Cells Adopt a Glial Fate in the Absence of <i>Neurogenin1 </i> . Journal of Neuroscience, 2008, 28, 12558-12569.	1.7	82
46	Functional Mechanotransduction Is Required for Cisplatin-Induced Hair Cell Death in the Zebrafish Lateral Line. Journal of Neuroscience, 2013, 33, 4405-4414.	1.7	80
47	Identification of Modulators of Hair Cell Regeneration in the Zebrafish Lateral Line. Journal of Neuroscience, 2012, 32, 3516-3528.	1.7	76
48	Expression of c-ret in the zebrafish embryo: Potential roles in motoneuronal development. Journal of Neurobiology, 1997, 33, 749-768.	3.7	75
49	Disruption of Intracellular Calcium Regulation Is Integral to Aminoglycoside-Induced Hair Cell Death. Journal of Neuroscience, 2013, 33, 7513-7525.	1.7	75
50	Zebrafish rx3 and mab21l2 are required during eye morphogenesis. Developmental Biology, 2004, 270, 336-349.	0.9	73
51	Profiling drug-induced cell death pathways in the zebrafish lateral line. Apoptosis: an International Journal on Programmed Cell Death, 2013, 18, 393-408.	2.2	7 3
52	Screen of FDA-approved drug library reveals compounds that protect hair cells from aminoglycosides and cisplatin. Hearing Research, 2012, 294, 153-165.	0.9	68
53	Proliferative Regeneration of Zebrafish Lateral Line Hair Cells after Different Ototoxic Insults. PLoS ONE, 2012, 7, e47257.	1.1	67
54	Fluorescent aminoglycosides reveal intracellular trafficking routes in mechanosensory hair cells. Journal of Clinical Investigation, 2016, 127, 472-486.	3.9	67

#	Article	IF	CITATIONS
55	Modeling Nociception in Zebrafish: A Way Forward for Unbiased Analgesic Discovery. PLoS ONE, 2015, 10, e0116766.	1.1	66
56	Hedgehog signaling is directly required for the development of zebrafish dorsal root ganglia neurons. Development (Cambridge), 2003, 130, 5351-5362.	1.2	65
57	Robust regeneration of adult zebrafish lateral line hair cells reflects continued precursor pool maintenance. Developmental Biology, 2015, 402, 229-238.	0.9	65
58	Endoderm-derived Fgf3 is necessary and sufficient for inducing neurogenesis in the epibranchial placodes in zebrafish. Development (Cambridge), 2005, 132, 3717-3730.	1.2	63
59	Ca ²⁺ -Permeable AMPARs Mediate Glutamatergic Transmission and Excitotoxic Damage at the Hair Cell Ribbon Synapse. Journal of Neuroscience, 2017, 37, 6162-6175.	1.7	61
60	Phenotypic Optimization of Urea–Thiophene Carboxamides To Yield Potent, Well Tolerated, and Orally Active Protective Agents against Aminoglycoside-Induced Hearing Loss. Journal of Medicinal Chemistry, 2018, 61, 84-97.	2.9	58
61	Regulation of Oligodendrocyte Development by Insulin-Like Growth Factors and Cyclic Nucleotides. Annals of the New York Academy of Sciences, 1990, 605, 101-109.	1.8	57
62	Reiterated Wnt and BMP signals in neural crest development. Seminars in Cell and Developmental Biology, 2005, 16, 673-682.	2.3	57
63	Screening for chemicals that affect hair cell death and survival in the zebrafish lateral line. Hearing Research, 2012, 288, 58-66.	0.9	57
64	Specification of neural crest into sensory neuron and melanocyte lineages. Developmental Biology, 2012, 366, 55-63.	0.9	56
65	Development of the neural crest: achieving specificity in regulatory pathways. Current Opinion in Cell Biology, 2006, 18, 698-703.	2.6	55
66	The metalloproteinase inhibitor Reck is essential for zebrafish DRG development. Development (Cambridge), 2012, 139, 1141-1152.	1.2	54
67	Maternal and embryonic expression of zebrafish lef1. Mechanisms of Development, 1999, 86, 147-150.	1.7	53
68	Lef1 is required for progenitor cell identity in the zebrafish lateral line primordium. Development (Cambridge), 2011, 138, 3921-3930.	1.2	53
69	ORC-13661 protects sensory hair cells from aminoglycoside and cisplatin ototoxicity. JCI Insight, 2019, 4, .	2.3	52
70	FGF is essential for both condensation and mesenchymal–epithelial transition stages of pronephric kidney tubule development. Developmental Biology, 2006, 297, 103-117.	0.9	51
71	UDP xylose synthase 1 is required for morphogenesis and histogenesis of the craniofacial skeleton. Developmental Biology, 2010, 341, 400-415.	0.9	51
72	Fate plasticity and reprogramming in genetically distinct populations of <i>Danio</i> leucophores. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11806-11811.	3.3	49

#	Article	lF	CITATIONS
73	Postembryonic neuronal addition in Zebrafish dorsal root ganglia is regulated by Notch signaling. Neural Development, 2012, 7, 23.	1.1	48
74	lessen encodes a zebrafish trap100 required for enteric nervous system development. Development (Cambridge), 2006, 133, 395-406.	1.2	47
75	The zebrafish <i>merovingian</i> mutant reveals a role for pH regulation in hair cell toxicity and function. DMM Disease Models and Mechanisms, 2014, 7, 847-856.	1.2	47
76	Reck enables cerebrovascular development by promoting canonical Wnt signaling. Development (Cambridge), 2015, 143, 147-59.	1.2	47
77	Signals derived from the underlying mesoderm are dispensable for zebrafish neural crest induction. Developmental Biology, 2004, 276, 16-30.	0.9	45
78	Distinct progenitor populations mediate regeneration in the zebrafish lateral line. ELife, 2019, 8, .	2.8	45
79	Water Waves to Sound Waves: Using Zebrafish to Explore Hair Cell Biology. JARO - Journal of the Association for Research in Otolaryngology, 2019, 20, 1-19.	0.9	44
80	Fish in a dish: drug discovery for hearing habilitation. Drug Discovery Today: Disease Models, 2013, 10, e23-e29.	1.2	42
81	Chapter 4 Early Pressure Screens. Methods in Cell Biology, 1998, , 71-86.	0.5	41
82	Identification of Small Molecule Inhibitors of Cisplatin-Induced Hair Cell Death. Otology and Neurotology, 2015, 36, 519-525.	0.7	33
83	Specification of Sensory Neuron Cell Fate from the Neural Crest. , 2006, 589, 170-180.		30
84	Quinoline Ring Derivatives Protect Against Aminoglycoside-Induced Hair Cell Death in the Zebrafish Lateral Line. JARO - Journal of the Association for Research in Otolaryngology, 2012, 13, 759-770.	0.9	30
85	Using the zebrafish lateral line to uncover novel mechanisms of action and prevention in drug-induced hair cell death. Frontiers in Cellular Neuroscience, 2015, 9, 46.	1.8	30
86	Cumulative mitochondrial activity correlates with ototoxin susceptibility in zebrafish mechanosensory hair cells. ELife, $2018, 7, \ldots$	2.8	30
87	Mechanisms for reaching the differentiated state: Insights from neural crest-derived melanocytes. Seminars in Cell and Developmental Biology, 2009, 20, 105-110.	2.3	29
88	A targeted gene expression system using the tryptophan repressor in zebrafish shows no silencing in subsequent generations. Development (Cambridge), 2014, 141, 1167-1174.	1.2	26
89	Innervation regulates synaptic ribbons in lateral line mechanosensory hair cells. Journal of Cell Science, 2016, 129, 2250-60.	1.2	26
90	De novo variants in GREB1L are associated with non-syndromic inner ear malformations and deafness. Human Genetics, 2018, 137, 459-470.	1.8	24

#	Article	IF	Citations
91	Damaging de novo missense variants in <i>EEF1A2</i> lead to a developmental and degenerative epilepticâ€dyskinetic encephalopathy. Human Mutation, 2020, 41, 1263-1279.	1.1	24
92	Cilia-Associated Genes Play Differing Roles in Aminoglycoside-Induced Hair Cell Death in Zebrafish. G3: Genes, Genomes, Genetics, 2016, 6, 2225-2235.	0.8	22
93	Chloroquine kills hair cells in zebrafish lateral line and murine cochlear cultures: Implications for ototoxicity. Hearing Research, 2020, 395, 108019.	0.9	22
94	Loss of Slc4a1b Chloride/Bicarbonate Exchanger Function Protects Mechanosensory Hair Cells from Aminoglycoside Damage in the Zebrafish Mutant persephone. PLoS Genetics, 2012, 8, e1002971.	1.5	21
95	Noise-Induced Hypersensitization of the Acoustic Startle Response in Larval Zebrafish. JARO - Journal of the Association for Research in Otolaryngology, 2018, 19, 741-752.	0.9	17
96	The Inner Ear Heat Shock Transcriptional Signature Identifies Compounds That Protect Against Aminoglycoside Ototoxicity. Frontiers in Cellular Neuroscience, 2018, 12, 445.	1.8	14
97	Kit and foxd3 genetically interact to regulate melanophore survival in zebrafish. Developmental Dynamics, 2009, 238, 875-886.	0.8	13
98	An ancient neurotrophin receptor code; a single Runx/Cbf \hat{l}^2 complex determines somatosensory neuron fate specification in zebrafish. PLoS Genetics, 2017, 13, e1006884.	1.5	12
99	Modulation of dorsal root ganglion development by ErbB signaling and the scaffold protein Sorbs3. Development (Cambridge), 2013, 140, 3986-3996.	1.2	10
100	Lateral specification of cell fate during vertebrate development. Current Opinion in Genetics and Development, 1995, 5, 444-449.	1.5	9
101	Defective <i>adgra2</i> (<i>gpr124</i>) splicing and function in zebrafish <i>ouchless</i> mutants. Development (Cambridge), 2017, 144, 8-11.	1.2	8
102	The <i>occhiolino (occ)</i> mutant Zebrafish, a model for development of the optical function in the biological lens. Developmental Dynamics, 2017, 246, 915-924.	0.8	7
103	The role of retrograde intraflagellar transport genes in aminoglycoside-induced hair cell death. Biology Open, 2018, 8, .	0.6	6
104	Hearing Loss, Protection, and Regeneration in the Larval Zebrafish Lateral Line. Springer Handbook of Auditory Research, 2013, , 313-347.	0.3	5
105	Neural Crest Cells and Peripheral Nervous System Development. , 2014, , 255-286.		5
106	Organization of the lateral line system in embryonic zebrafish. Journal of Comparative Neurology, 2000, 421, 189-198.	0.9	3
107	Rin, a novel cell-surface protein that labels reticular neurons early in chick neurogenesis. Journal of Neurobiology, 1994, 25, 395-405.	3.7	2
108	Screen for mutations affecting development of zebrafish neural crest. Genesis, 1996, 18, 11-17.	3.3	2

#	Article	IF	CITATIONS
109	Regulation of Oligodendrocyte Development by Insulin-Like Growth Factors and Cyclic AMP. , 1990 , , $281\text{-}292$.		2
110	Innervation regulates synaptic ribbons in lateral line mechanosensory hair cells. Development (Cambridge), 2016, 143, e1.2-e1.2.	1.2	2
111	The Mechanosensory Lateral Line System. , 2020, , 245-253.		1
112	Environmental signals and cell fate specification in premigratory neural crest. BioEssays, 2000, 22, 708-716.	1.2	1
113	Zebrafish Neuromast Hair Cell Nuclei are Labeled in Vivo by Uptake of Monomeric Cyanine Dyes. Microscopy and Microanalysis, 2002, 8, 1058-1059.	0.2	0
114	Losing the license to regenerate hair cells. Developmental Cell, 2021, 56, 2402-2404.	3.1	0
115	Specification of Neural Crest Cell Fate in the Embryonic Zebrafish. , 1999, , 415-425.		0
116	An in vivo Biomarker to Characterize Ototoxic Compounds and Novel Protective Therapeutics. Frontiers in Molecular Neuroscience, 0, 15, .	1.4	0