Andrea Brovelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4953349/publications.pdf

Version: 2024-02-01

37 papers

2,730 citations

331670
21
h-index

32 g-index

42 all docs 42 docs citations

42 times ranked 3830 citing authors

#	Article	IF	CITATIONS
1	Group-level inference of information-based measures for the analyses of cognitive brain networks from neurophysiological data. NeuroImage, 2022, 258, 119347.	4.2	10
2	Stroke-related alterations in inter-areal communication. NeuroImage: Clinical, 2021, 32, 102812.	2.7	8
3	Two classes of functional connectivity in dynamical processes in networks. Journal of the Royal Society Interface, 2021, 18, 20210486.	3.4	7
4	A generative spiking neural-network model of goal-directed behaviour and one-step planning. PLoS Computational Biology, 2020, 16, e1007579.	3.2	5
5	Tensorpac: An open-source Python toolbox for tensor-based phase-amplitude coupling measurement in electrophysiological brain signals. PLoS Computational Biology, 2020, 16, e1008302.	3.2	33
6	Title is missing!. , 2020, 16, e1008302.		0
7	Title is missing!. , 2020, 16, e1008302.		O
8	Title is missing!. , 2020, 16, e1008302.		0
9	Title is missing!. , 2020, 16, e1008302.		O
10	Neural mechanisms mediating degrees of strategic uncertainty. Social Cognitive and Affective Neuroscience, 2018, 13, 52-62.	3.0	18
11	Dynamic Reconfiguration of Visuomotor-Related Functional Connectivity Networks. Journal of Neuroscience, 2017, 37, 839-853.	3.6	2
12	Dynamic Reconfiguration of Visuomotor-Related Functional Connectivity Networks. Journal of Neuroscience, 2017, 37, 839-853.	3.6	42
13	Local or Not Local: Investigating the Nature of Striatal Theta Oscillations in Behaving Rats. ENeuro, 2017, 4, ENEURO.0128-17.2017.	1.9	45
14	Graph Measures of Node Strength for Characterizing Preictal Synchrony in Partial Epilepsy. Brain Connectivity, 2016, 6, 530-539.	1.7	38
15	<i>MarsAtlas</i> : A cortical parcellation atlas for functional mapping. Human Brain Mapping, 2016, 37, 1573-1592.	3.6	59
16	Modeling choice and reaction time during arbitrary visuomotor learning through the coordination of adaptive working memory and reinforcement learning. Frontiers in Behavioral Neuroscience, 2015, 9, 225.	2.0	44
17	Learning by observation in the macaque monkey under high experimental constraints. Behavioural Brain Research, 2015, 289, 141-148.	2.2	12
	Characterization of Cortical Networks and Corticocortical Functional Connectivity Mediating		

#	Article	IF	CITATIONS
19	Neurophysiological correlates of visuo-motor learning through mental and physical practice. Neuropsychologia, 2014, 55, 6-14.	1.6	24
20	Coordination of adaptive working memory and reinforcement learning systems explaining choice and reaction time in a human experiment. BMC Neuroscience, 2014, 15 , .	1.9	0
21	The ups and downs of beta oscillations in sensorimotor cortex. Experimental Neurology, 2013, 245, 15-26.	4.1	507
22	Vicarious Neural Processing of Outcomes during Observational Learning. PLoS ONE, 2013, 8, e73879.	2.5	38
23	Statistical Analysis of Single-Trial Granger Causality Spectra. Computational and Mathematical Methods in Medicine, 2012, 2012, 1-10.	1.3	10
24	Multivoxel Pattern Analysis for fMRI Data: A Review. Computational and Mathematical Methods in Medicine, 2012, 2012, 1-14.	1.3	147
25	Advanced Parkinson's disease effect on goal-directed and habitual processes involved in visuomotor associative learning. Frontiers in Human Neuroscience, 2012, 6, 351.	2.0	22
26	Differential roles of caudate nucleus and putamen during instrumental learning. NeuroImage, 2011, 57, 1580-1590.	4.2	106
27	I learned from what you did: Retrieving visuomotor associations learned by observation. NeuroImage, 2008, 42, 1207-1213.	4.2	15
28	Understanding the Neural Computations of Arbitrary Visuomotor Learning through fMRI and Associative Learning Theory. Cerebral Cortex, 2008, 18, 1485-1495.	2.9	66
29	EEG dynamics of the frontoparietal network during reaching preparation in humans. Neurolmage, 2007, 34, 1673-1682.	4.2	44
30	Estimating the hidden learning representations. Journal of Physiology (Paris), 2007, 101, 110-117.	2.1	2
31	Visuo-motor learning with combination of different rates of motor imagery and physical practice. Experimental Brain Research, 2007, 184, 105-113.	1.5	108
32	High gamma frequency oscillatory activity dissociates attention from intention in the human premotor cortex. Neurolmage, 2005, 28, 154-164.	4.2	150
33	Beta oscillations in a large-scale sensorimotor cortical network: Directional influences revealed by Granger causality. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9849-9854.	7.1	939
34	Medium-Range Oscillatory Network and the 20-Hz Sensorimotor Induced Potential. NeuroImage, 2002, 16, 130-141.	4.2	32
35	Effects of lesions to area V6A in monkeys. Experimental Brain Research, 2002, 144, 419-422.	1.5	113
36	A simple and fast technique for on-line fMRI data analysis. Magnetic Resonance Imaging, 2002, 20, 207-213.	1.8	4

3

#	Article	IF	CITATIONS
37	fMRI and EEG Responses to Periodic Visual Stimulation. Neurolmage, 1999, 10, 125-148.	4.2	26