Vishwa Deep Dixit

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4953101/publications.pdf

Version: 2024-02-01

30 papers

4,705 citations

304743 22 h-index 30 g-index

33 all docs 33 docs citations

times ranked

33

7867 citing authors

#	Article	IF	CITATIONS
1	The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome–mediated inflammatory disease. Nature Medicine, 2015, 21, 263-269.	30.7	1,400
2	Canonical Nlrp3 Inflammasome Links Systemic Low-Grade Inflammation to Functional Decline in Aging. Cell Metabolism, 2013, 18, 519-532.	16.2	494
3	Adipose Tissue Macrophages Promote Myelopoiesis and Monocytosis in Obesity. Cell Metabolism, 2014, 19, 821-835.	16.2	395
4	Immunological complications of obesity. Nature Immunology, 2012, 13, 707-712.	14.5	382
5	Inflammasome-driven catecholamine catabolism in macrophages blunts lipolysis during ageing. Nature, 2017, 550, 119-123.	27.8	329
6	\hat{l}^2 -Hydroxybutyrate Deactivates Neutrophil NLRP3 Inflammasome to Relieve Gout Flares. Cell Reports, 2017, 18, 2077-2087.	6.4	271
7	Drivers of ageâ€related inflammation and strategies for healthspan extension. Immunological Reviews, 2015, 265, 63-74.	6.0	217
8	IGF1 Shapes Macrophage Activation in Response to Immunometabolic Challenge. Cell Reports, 2017, 19, 225-234.	6.4	150
9	Aging Induces an Nlrp3 Inflammasome-Dependent Expansion of Adipose B Cells That Impairs Metabolic Homeostasis. Cell Metabolism, 2019, 30, 1024-1039.e6.	16.2	125
10	Caloric restriction in humans reveals immunometabolic regulators of health span. Science, 2022, 375, 671-677.	12.6	118
11	Ketogenesis activates metabolically protective γδT cells in visceral adipose tissue. Nature Metabolism, 2020, 2, 50-61.	11.9	107
12	Ketogenic diet activates protective $\hat{l}^3\hat{l}^\prime T$ cell responses against influenza virus infection. Science Immunology, 2019, 4, .	11.9	98
13	Prolongevity hormone FGF21 protects against immune senescence by delaying age-related thymic involution. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1026-1031.	7.1	91
14	Growth Hormone Receptor Deficiency Protects against Age-Related NLRP3 Inflammasome Activation and Immune Senescence. Cell Reports, 2016, 14, 1571-1580.	6.4	77
15	Dietary Regulation of Immunity. Immunity, 2020, 53, 510-523.	14.3	64
16	Pathogenesis of hypothyroidism-induced NAFLD is driven by intra- and extrahepatic mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9172-E9180.	7.1	52
17	Desmosterol suppresses macrophage inflammasome activation and protects against vascular inflammation and atherosclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	50
18	Antiâ€inflammatory effects of oestrogen mediate the sexual dimorphic response to lipidâ€induced insulin resistance. Journal of Physiology, 2019, 597, 3885-3903.	2.9	48

#	Article	IF	Citations
19	IL-33 causes thermogenic failure in aging by expanding dysfunctional adipose ILC2. Cell Metabolism, 2021, 33, 2277-2287.e5.	16.2	42
20	Adiponectin preserves metabolic fitness during aging. ELife, 2021, 10, .	6.0	37
21	Ketogenic diet restrains aging-induced exacerbation of coronavirus infection in mice. ELife, 2021, 10, .	6.0	37
22	Enhanced epigenetic profiling of classical human monocytes reveals a specific signature of healthy aging in the DNA methylome. Nature Aging, 2021, 1, 124-141.	11.6	30
23	Loss of Nucleobindin-2 Causes Insulin Resistance in Obesity without Impacting Satiety or Adiposity. Cell Reports, 2018, 24, 1085-1092.e6.	6.4	21
24	A review of the biomedical innovations for healthy longevity. Aging, 2017, 9, 7-25.	3.1	18
25	Inactivation of C/ebp Homologous Protein-driven Immune-Metabolic Interactions Exacerbate Obesity and Adipose Tissue Leukocytosis. Journal of Biological Chemistry, 2014, 289, 14045-14055.	3.4	14
26	Bone Marrow: An Immunometabolic Refuge during Energy Depletion. Cell Metabolism, 2019, 30, 621-623.	16.2	13
27	Carnitine acetyltransferase (CRAT) expression in macrophages is dispensable for nutrient stress sensing and inflammation. Molecular Metabolism, 2017, 6, 219-225.	6.5	7
28	Energy Sparing Orexigenic Inflammation of Obesity. Cell Metabolism, 2017, 26, 10-12.	16.2	5
29	Gaining Weight: Insulin-Eating Islet Macrophages. Immunity, 2019, 50, 13-15.	14.3	4
30	Editorial: "Crowning" eosinophils in adipose tissue: does location matter?. Journal of Leukocyte Biology, 2015, 98, 451-452.	3.3	3