Lucia Battistini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4953051/publications.pdf

Version: 2024-02-01

136950 175258 3,046 75 32 52 h-index citations g-index papers 105 105 105 2276 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Nintedanib-Containing Dual Conjugates Targeting $\hat{l}\pm\langle sub\rangle V\langle sub\rangle \hat{l}^2\langle sub\rangle 6\langle sub\rangle$ Integrin and Tyrosine Kinase Receptors as Potential Antifibrotic Agents. ACS Omega, 2022, 7, 17658-17669.	3.5	6
2	Direct, Asymmetric Synthesis of Carbocycleâ€Fused Uracils via [4+2] Cycloadditions: a Noncovalent Organocatalysis Approach. Advanced Synthesis and Catalysis, 2021, 363, 2625-2633.	4.3	8
3	RGD Peptideâ€Drug Conjugates as Effective Dual Targeting Platforms: Recent Advances. European Journal of Organic Chemistry, 2021, 2021, 2506-2528.	2.4	36
4	New 4-Aminoproline-Based Small Molecule Cyclopeptidomimetics as Potential Modulators of $\hat{l}\pm4\hat{l}^21$ Integrin. Molecules, 2021, 26, 6066.	3.8	3
5	Unlocking Access to Enantiopure Fused Uracils by Chemodivergent [4+2] Crossâ€Cycloadditions: DFTâ€Supported Homoâ€Synergistic Organocatalytic Approach. Angewandte Chemie - International Edition, 2020, 59, 20055-20064.	13.8	12
6	Unlocking Access to Enantiopure Fused Uracils by Chemodivergent [4+2] Crossâ€Cycloadditions: DFTâ€Supported Homoâ€Synergistic Organocatalytic Approach. Angewandte Chemie, 2020, 132, 20230-20239.	2.0	5
7	Shifting Towards α _V β ₆ Integrin Ligands Using Novel Aminoprolineâ€Based Cyclic Peptidomimetics. Chemistry - A European Journal, 2020, 26, 13468-13475.	3.3	7
8	New Developments of the Principle of Vinylogy as Applied to π-Extended Enolate-Type Donor Systems. Chemical Reviews, 2020, 120, 2448-2612.	47.7	122
9	Efficacy of a Selective Binder of $\hat{l}\pm V\hat{l}^2$ 3 Integrin Linked to the Tyrosine Kinase Inhibitor Sunitinib in Ovarian Carcinoma Preclinical Models. Cancers, 2019, 11, 531.	3.7	18
10	Integrin-targeted AmpRGD sunitinib liposomes as integrated antiangiogenic tools. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 18, 135-145.	3.3	21
11	Cell-targeted c(AmpRGD)-sunitinib molecular conjugates impair tumor growth of melanoma. Cancer Letters, 2019, 446, 25-37.	7.2	28
12	Exploring the Remote Reactivity of π-Extended Carbonyl Compounds: The Vinylogous Alkylidene Malononitrile Activation Strategy. Synlett, 2018, 29, 266-281.	1.8	18
13	(<i>E</i>)â€3â€(Alkoxycarbonylâ€2â€Alkyliden)â€2â€Oxindoles: Multidentate Pronucleophiles for the Organocatalytic, Vinylogous Michael Addition to Nitroolefins. Advanced Synthesis and Catalysis, 2018, 360, 711-721.	4.3	13
14	Enolizable Alkylidene Heterocyclic and Carbocyclic Carbonyl SystemsÂ: Valuable Vinylogous Donor Substrates in Synthesis. Synthesis, 2017, 49, 2297-2336.	2.3	32
15	Synthesis of Novel c(AmpRGD)–Sunitinib Dual Conjugates as Molecular Tools Targeting the α _v β ₃ Integrin/VEGFR2 Couple and Impairing Tumor-Associated Angiogenesis. Journal of Medicinal Chemistry, 2017, 60, 248-262.	6.4	36
16	Catalytic, Enantioselective Vinylogous Mukaiyama Aldol Reaction of Furanâ€Based Dienoxy Silanes: A Chemodivergent Approach to γâ€Valerolactone Flavanâ€3â€ol Metabolites and δâ€Lactone Analogues. Advanced Synthesis and Catalysis, 2015, 357, 4082-4092.	l 4.3	40
17	Pushing the Boundaries of Vinylogous Reactivity: Catalytic Enantioselective Mukaiyama Aldol Reactions of Highly Unsaturated 2â€Silyloxyindoles. Chemistry - A European Journal, 2015, 21, 6433-6442.	3.3	23
18	Synthesis and preclinical evaluation of a novel, selective ¹¹¹ In-labelled aminoproline-RGD-peptide for non-invasive melanoma tumor imaging. MedChemComm, 2015, 6, 2175-2183.	3.4	11

#	Article	IF	CITATIONS
19	Organocatalytic, Asymmetric Eliminative [4+2] Cycloaddition of Allylidene Malononitriles with Enals: Rapid Entry to Cyclohexadieneâ€Embedding Linear and Angular Polycycles. Angewandte Chemie - International Edition, 2015, 54, 7386-7390.	13.8	37
20	Synthesis, structure and inhibitory activity of a stereoisomer of oseltamivir carboxylate. Organic and Biomolecular Chemistry, 2014, 12, 1561.	2.8	18
21	Enhancement of the Uptake and Cytotoxic Activity of Doxorubicin in Cancer Cells by Novel cRGD-Semipeptide-Anchoring Liposomes. Molecular Pharmaceutics, 2014, 11, 2280-2293.	4.6	25
22	Exploring the Vinylogous Reactivity of Cyclohexenylidene Malononitriles: Switchable Regioselectivity in the Organocatalytic Asymmetric Addition to Enals Giving Highly Enantioenriched Carbabicyclic Structures. Journal of the American Chemical Society, 2014, 136, 11107-11114.	13.7	106
23	3-Alkenyl-2-silyloxyindoles in Vinylogous Mannich Reactions: Synthesis of Aminated Indole-Based Scaffolds and Products. Organic Letters, 2014, 16, 932-935.	4.6	32
24	Direct and Enantioselective Vinylogous Michael Addition of αâ€Alkylidenepyrazolinones to Nitroolefins Catalyzed by Dual ⟨i⟩Cinchona⟨/i⟩ Alkaloid Thioureas. Advanced Synthesis and Catalysis, 2014, 356, 2330-2336.	4.3	52
25	Direct Regioâ€; Diastereoâ€; and Enantioselective Vinylogous Michael Addition of Prochiral 3â€Alkylideneoxindoles to Nitroolefins. Advanced Synthesis and Catalysis, 2013, 355, 1881-1886.	4.3	50
26	Design, Synthesis, and Biological Evaluation of Novel cRGDâ€"Paclitaxel Conjugates for Integrin-Assisted Drug Delivery. Bioconjugate Chemistry, 2012, 23, 1610-1622.	3.6	41
27	Bifunctional Cinchona Alkaloid/Thiourea Catalyzes Direct and Enantioselective Vinylogous Michael Addition of 3â€Alkylidene Oxindoles to Nitroolefins. Angewandte Chemie - International Edition, 2012, 51, 6200-6204.	13.8	116
28	3â€Alkenylâ€2â€silyloxyindoles: An Enabling, Yet Understated Progeny of Vinylogous Carbon Nucleophiles. European Journal of Organic Chemistry, 2012, 2012, 466-470.	2.4	37
29	The Vinylogous Aldol and Related Addition Reactions: Ten Years of Progress. Chemical Reviews, 2011, 111, 3076-3154.	47.7	487
30	Catalytic, Asymmetric Hypervinylogous Mukaiyama Aldol Reactions of Extended Furan-Based Silyl Enolates. Organic Letters, 2011, 13, 4738-4741.	4.6	31
31	anti-Selective, Catalytic Asymmetric Vinylogous Mukaiyama Mannich Reactions of Pyrrole-Based Silyl Dienolates withN-Aryl Aldimines. Journal of Organic Chemistry, 2011, 76, 2248-2252.	3.2	44
32	Diastereo- and Enantioselective Catalytic Vinylogous Mukaiyama-Mannich Reactions of Pyrrole-Based Silyl Dienolates with Alkyl-Substituted Aldehydes. Journal of Organic Chemistry, 2011, 76, 10291-10298.	3.2	39
33	Onâ€Water Vinylogous Mukaiyama–Michael Addition of Heterocyclic 2â€Silyloxydienes to 1,2â€Diazaâ€1,3â€dienes: Oneâ€Pot Threeâ€Step Entry to Functionalityâ€Rich Pyrroles. Advanced Synthesis and Catalysis, 2011, 353, 1966-1972.	4.3	17
34	Aqueous and Solventâ€Free Uncatalyzed Threeâ€Component Vinylogous Mukaiyama–Mannich Reactions of Pyrroleâ€Based Silyl Dienolates. Advanced Synthesis and Catalysis, 2011, 353, 3278-3284.	4.3	28
35	Catalytic, Asymmetric Vinylogous Mukaiyama Aldol Reactions of Pyrrole―and Furanâ€Based Dienoxy Silanes: How the Diene Heteroatom Impacts Stereocontrol. Advanced Synthesis and Catalysis, 2010, 352, 2011-2022.	4.3	36
36	Uncatalyzed, Diastereoselective Vinylogous Mukaiyama Aldol Reactions on Aqueous Media: Pyrrole vs Furan 2-Silyloxy Dienes. Journal of Organic Chemistry, 2010, 75, 8681-8684.	3.2	40

#	Article	IF	Citations
37	Asymmetric total synthesis of 1-deoxy-7,8-di-epi-castanospermine. Organic and Biomolecular Chemistry, 2010, 8, 1725.	2.8	25
38	Advances in Exploring Heterocyclic Dienoxysilane Nucleophiles in Asymmetric Synthesis. Synlett, 2009, 2009, 1525-1542.	1.8	118
39	Asymmetric, catalytic, vinylogous aldol reactions using pyrrole-based dienoxy silanes. Enantioselective synthesis of $\hat{l}\pm,\hat{l}^2$ -unsaturated \hat{l}^3 -butyrolactam synthons. Tetrahedron Letters, 2009, 50, 3428-3431.	1.4	43
40	4-Aminoproline-based arginine-glycine-aspartate integrin binders with exposed ligation points: practical in-solution synthesis, conjugation and binding affinity evaluation. Organic and Biomolecular Chemistry, 2009, 7, 4924.	2.8	18
41	Further Uses of Pyrroleâ€Based Dienoxysilane Synthons: A Full Aldol Approach to Azabicyclo[<i>x</i> .2.1]alkane Systems. European Journal of Organic Chemistry, 2008, 2008, 2273-2287.	2.4	18
42	Direct-type vinylogous Mukaiyama–Michael addition reactions involving pyrrolinone donors. Tetrahedron, 2008, 64, 11697-11705.	1.9	25
43	Discovery of Subnanomolar Arginine-Glycine-Aspartate-Based α _V β ₃ ∫α _V β ₅ Integrin Binders Embedding 4-Aminoproline Residues. Journal of Medicinal Chemistry, 2008, 51, 1771-1782.	6.4	46
44	Vicarious Silylative Mukaiyama Aldol Reaction: A Vinylogous Extension. Journal of Organic Chemistry, 2008, 73, 5446-5451.	3.2	33
45	Diastereoselective Synthesis of 4,5â€~Bis-proline Compounds via Reductive Dimerization of N-Acyloxyiminium lons. Journal of Organic Chemistry, 2007, 72, 1814-1817.	3.2	13
46	New Enantioselective Entry to Cycloheptane Amino Acid Polyols. Journal of Organic Chemistry, 2006, 71, 225-230.	3.2	24
47	Streamlined, Asymmetric Synthesis of 8,4â€~-Oxyneolignans. Journal of Organic Chemistry, 2006, 71, 8552-8558.	3.2	37
48	Advances in the Chemical Synthesis of Medium-Sized Cyclitols. ChemInform, 2005, 36, no.	0.0	0
49	Grafting Aminocyclopentane Carboxylic Acids onto the RGD Tripeptide Sequence Generates Low Nanomolar αVβ3/αVβ5Integrin Dual Binders. Journal of Medicinal Chemistry, 2005, 48, 7675-7687.	6.4	49
50	Silylative N-hydroxyalkylation of amide compounds: application to the synthesis of acyclic alditol-based nucleoside analogues. Tetrahedron, 2004, 60, 2957-2964.	1.9	4
51	Variable Strategy toward Carbasugars and Relatives. 6.1Diastereoselective Synthesis of 2-Deoxy-2-amino-5a-carba- \hat{l}^2 -l-mannopyranuronic Acid and 2-Deoxy-2-amino-5a-carba- \hat{l}^2 -l-mannopyranose. Journal of Organic Chemistry, 2004, 69, 1625-1628.	3.2	24
52	Enantioselective Total Synthesis of (1R,3S,4R,5R)-1-Amino-4,5-dihydroxycyclopentane-1,3-dicarboxylic Acid. A Full-Aldol Access to Carbaketose Derivatives. Journal of Organic Chemistry, 2004, 69, 2611-2613.	3.2	29
53	Advances in the Chemical Synthesis of Medium-Sized Cyclitols. Mini-Reviews in Organic Chemistry, 2004, 1, 343-357.	1.3	20
54	A short entry to novel C(2)-methyl branched 4a-carbafuranoses. Tetrahedron: Asymmetry, 2003, 14, 1665-1670.	1.8	13

#	Article	IF	CITATIONS
55	Variable Strategy toward Carbasugars and Relatives. 5.1Focus on Preparation of Chiral Nonracemic Medium-Sized Carbocycles. Journal of Organic Chemistry, 2003, 68, 5881-5885.	3.2	35
56	Advances in Chemical Synthesis of Carbasugars and Analogues. Studies in Natural Products Chemistry, 2003, 29, 449-520.	1.8	24
57	Variable Strategy toward Carbasugars and Relatives. 4.1Viable Access to (4a-Carbapentofuranosyl)amines, (5a-Carbahexopyranosyl)amines, and Amino Acids Thereof. Journal of Organic Chemistry, 2002, 67, 5338-5342.	3.2	35
58	Synthesis of a Small Repertoire of Non-Racemic 5a-Carbahexopyranoses and 1-Thio-5a-carbahexopyranoses. European Journal of Organic Chemistry, 2002, 2002, 1956.	2.4	20
59	Variable Strategy toward Carbasugars and Relatives. 2.1 Diversity-Based Synthesis of \hat{l}^2 -d-Xylo, \hat{l}^2 -d-Ribo, \hat{l}^2 -l-Arabino, and \hat{l}^2 -l-Lyxo 4a-Carbafuranoses and (4a-Carbafuranosyl)thiols. Journal of Organic Chemistry, 2001, 66, 8070-8075.	3.2	43
60	The synthetic utility of furan-, pyrrole- and thiophene-based 2-silyloxy dienes. Chemical Society Reviews, 2000, 29, 109-118.	38.1	147
61	The Utility of Furan-, Pyrrole-, and Thiophene-Based 2-Silyloxy Dienes As Demonstrated by Modular Synthesis of Annonaceous Acetogenin Core Units and Their Pyrrolidine and Thiolane Analogues. Journal of Organic Chemistry, 2000, 65, 2048-2064.	3.2	32
62	Variable Strategy toward Carbasugars and Relatives. 1. Stereocontrolled Synthesis of Pseudo-β-d-gulopyranose, Pseudo-β-d-xylofuranose, (Pseudo-β-d-gulopyranosyl)amine, and (Pseudo-β-d-xylofuranosyl)amine. Journal of Organic Chemistry, 2000, 65, 6307-6318.	3.2	42
63	Diastereoselective synthesis of a novel lactam peptidomimetic exploiting vinylogous Mannich addition of 2-silyloxyfuran reagents. Tetrahedron: Asymmetry, 1999, 10, 765-773.	1.8	30
64	Lewis Acid Assisted Vinylogous Mannich and Mukaiyama Aldol Reactions: A Route to Densely Hydroxylated Indolizidine Alkaloid Analogues. European Journal of Organic Chemistry, 1999, 1999, 1395-1400.	2.4	33
65	Variable Strategy toward Carbasugars and Relatives As Illustrated by Diastereoselective Synthesis of 1-Deoxy-1-amino-pseudo-β-d-gulopyranose (Alias 1,2,4-Tri-epi-validamine). Organic Letters, 1999, 1, 1213-1215.	4.6	20
66	Asymmetric access to functional, structurally diverse molecules exploiting five-membered heterocyclic silyloxy dienes. Advances in Asymmetric Synthesis, 1999, , 113-189.	0.4	11
67	Modular Approach toward the Construction of the Core Motifs of Annonaceous Acetogenins and Variants Thereof. Journal of Organic Chemistry, 1998, 63, 1368-1369.	3.2	31
68	Parallel, Stereoselective Syntheses of both Enantiomers of Muricatacin and Their Sulfur and Nitrogen Relatives Using the Silyloxy Diene-Based Methodology. Journal of Organic Chemistry, 1997, 62, 4513-4517.	3.2	46
69	Expeditious Syntheses of Sugar-Modified Nucleosides and Collections Thereof Exploiting Furan-, Pyrrole-, and Thiophene-Based Siloxy Dienes. Journal of Medicinal Chemistry, 1997, 40, 168-180.	6.4	54
70	Total synthesis of both enentiomers of trans- \hat{l}^2 -hydroxyppecolic acid. Tetrahedron: Asymmetry, 1997, 8, 2975-2987.	1.8	44
71	Diastereoselective synthesis of. Tetrahedron: Asymmetry, 1997, 8, 3237-3243.	1.8	23
72	Divergent synthesis of 3-amino-3-deoxy- and 4-amino-4-deoxyhexoses. Tetrahedron, 1996, 52, 4829-4838.	1.9	18

Lucia Battistini

#	Article	IF	CITATIONS
73	Total synthesis of both enantiomers of trans-2,3-cis-3,4-dihydroxyproline. Tetrahedron: Asymmetry, 1996, 7, 1167-1180.	1.8	47
74	Diastereoselective synthesis of α-C-arabinofuranosyl glycine. Tetrahedron: Asymmetry, 1995, 6, 371-374.	1.8	23
75	\hat{I}^3 -Substituted pyrrole-based silyl dienol ethers as \hat{I}_2 -amino acid enolate equivalents: a versatile entry to racemic \hat{I}_2 -substituted \hat{I}_2 -amino acids. Journal of the Chemical Society Perkin Transactions 1, 1995, , 2471-2475.	0.9	14