Seokwoo Jeon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4951388/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tuning the Photoluminescence of Graphene Quantum Dots through the Charge Transfer Effect of Functional Groups. ACS Nano, 2013, 7, 1239-1245.	14.6	745
2	Heterogeneous Three-Dimensional Electronics by Use of Printed Semiconductor Nanomaterials. Science, 2006, 314, 1754-1757.	12.6	632
3	Micro- and Nanopatterning Techniques for Organic Electronic and Optoelectronic Systems. Chemical Reviews, 2007, 107, 1117-1160.	47.7	612
4	Enhanced Mechanical Properties of Graphene/Copper Nanocomposites Using a Molecular‣evel Mixing Process. Advanced Materials, 2013, 25, 6724-6729.	21.0	590
5	Enhanced Thermal Conductivity of Epoxy–Graphene Composites by Using Nonâ€Oxidized Graphene Flakes with Nonâ€Covalent Functionalization. Advanced Materials, 2013, 25, 732-737.	21.0	586
6	Strengthening effect of single-atomic-layer graphene in metal–graphene nanolayered composites. Nature Communications, 2013, 4, 2114.	12.8	520
7	Scalable Exfoliation Process for Highly Soluble Boron Nitride Nanoplatelets by Hydroxide-Assisted Ball Milling. Nano Letters, 2015, 15, 1238-1244.	9.1	486
8	Solution Casting and Transfer Printing Single-Walled Carbon Nanotube Films. Nano Letters, 2004, 4, 1643-1647.	9.1	447
9	Wearable Textile Battery Rechargeable by Solar Energy. Nano Letters, 2013, 13, 5753-5761.	9.1	400
10	New Iron-Based Mixed-Polyanion Cathodes for Lithium and Sodium Rechargeable Batteries: Combined First Principles Calculations and Experimental Study. Journal of the American Chemical Society, 2012, 134, 10369-10372.	13.7	395
11	Recent progress on flexible lithium rechargeable batteries. Energy and Environmental Science, 2014, 7, 538-551.	30.8	355
12	Bioinspired, Highly Stretchable, and Conductive Dry Adhesives Based on 1D–2D Hybrid Carbon Nanocomposites for All-in-One ECG Electrodes. ACS Nano, 2016, 10, 4770-4778.	14.6	354
13	Bifunctional Composite Catalysts Using Co ₃ O ₄ Nanofibers Immobilized on Nonoxidized Graphene Nanoflakes for High-Capacity and Long-Cycle Li–O ₂ Batteries. Nano Letters, 2013, 13, 4190-4197.	9.1	329
14	Versatile Carbon Hybrid Films Composed of Vertical Carbon Nanotubes Grown on Mechanically Compliant Graphene Films. Advanced Materials, 2010, 22, 1247-1252.	21.0	307
15	Three-dimensional nanonetworks for giant stretchability in dielectrics and conductors. Nature Communications, 2012, 3, 916.	12.8	292
16	Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 12428-12433.	7.1	280
17	Highly Efficient Lightâ€Emitting Diode of Graphene Quantum Dots Fabricated from Graphite Intercalation Compounds. Advanced Optical Materials, 2014, 2, 1016-1023.	7.3	229
18	Uniform Graphene Quantum Dots Patterned from Self-Assembled Silica Nanodots. Nano Letters, 2012, 12, 6078-6083.	9.1	186

#	Article	IF	CITATIONS
19	Enhanced Mechanical Properties of Epoxy Nanocomposites by Mixing Noncovalently Functionalized Boron Nitride Nanoflakes. Small, 2013, 9, 2602-2610.	10.0	183
20	Hydrothermal Synthesis of Er-Doped Luminescent TiO2Nanoparticles. Chemistry of Materials, 2003, 15, 1256-1263.	6.7	174
21	Two-Dimensional WO ₃ Nanosheets Chemically Converted from Layered WS ₂ for High-Performance Electrochromic Devices. Nano Letters, 2018, 18, 5646-5651.	9.1	169
22	Exfoliation of Non-Oxidized Graphene Flakes for Scalable Conductive Film. Nano Letters, 2012, 12, 2871-2876.	9.1	163
23	High-performance gas sensor array for indoor air quality monitoring: the role of Au nanoparticles on WO ₃ , SnO ₂ , and NiO-based gas sensors. Journal of Materials Chemistry A, 2021, 9, 1159-1167.	10.3	141
24	Highly Aligned, Anisotropic Carbon Nanofiber Films for Multidirectional Strain Sensors with Exceptional Selectivity. Advanced Functional Materials, 2019, 29, 1901623.	14.9	137
25	Enhanced electrocatalytic activity by chemical nitridation of two-dimensional titanium carbide MXene for hydrogen evolution. Journal of Materials Chemistry A, 2018, 6, 20869-20877.	10.3	133
26	Soft Lithography Using Acryloxy Perfluoropolyether Composite Stamps. Langmuir, 2007, 23, 2898-2905.	3.5	130
27	Enhanced conduction and charge-selectivity by N-doped graphene flakes in the active layer of bulk-heterojunction organic solar cells. Energy and Environmental Science, 2013, 6, 3000.	30.8	127
28	Preciousâ€Metalâ€Free Electrocatalysts for Activation of Hydrogen Evolution with Nonmetallic Electron Donor: Chemical Composition Controllable Phosphorous Doped Vanadium Carbide MXene. Advanced Functional Materials, 2019, 29, 1903443.	14.9	125
29	Intrinsic Photoluminescence Emission from Subdomained Graphene Quantum Dots. Advanced Materials, 2016, 28, 5255-5261.	21.0	124
30	Three-Dimensional Nanofabrication with Rubber Stamps and Conformable Photomasks. Advanced Materials, 2004, 16, 1369-1373.	21.0	123
31	Strategies to improve the photocatalytic activity of TiO ₂ : 3D nanostructuring and heterostructuring with graphitic carbon nanomaterials. Nanoscale, 2019, 11, 7025-7040.	5.6	123
32	Fabricating three-dimensional nanostructures using two photon lithography in a single exposure step. Optics Express, 2006, 14, 2300.	3.4	116
33	Three-Dimensional Continuous Conductive Nanostructure for Highly Sensitive and Stretchable Strain Sensor. ACS Applied Materials & Interfaces, 2017, 9, 17369-17378.	8.0	114
34	BMP-2 peptide-functionalized nanopatterned substrates for enhanced osteogenic differentiation of human mesenchymal stem cells. Biomaterials, 2013, 34, 7236-7246.	11.4	109
35	Effects of a SnO ₂ hole blocking layer in a BiVO ₄ -based photoanode on photoelectrocatalytic water oxidation. Journal of Materials Chemistry A, 2017, 5, 6905-6913.	10.3	107
36	Neutron and X-ray Diffraction Study of Pyrophosphate-Based Li _{2–<i>x</i>} MP ₂ O ₇ (M = Fe, Co) for Lithium Rechargeable Battery Electrodes. Chemistry of Materials, 2011, 23, 3930-3937.	6.7	106

#	Article	IF	CITATIONS
37	Enhanced Durability of Polymer Electrolyte Membrane Fuel Cells by Functionalized 2D Boron Nitride Nanoflakes. ACS Applied Materials & Interfaces, 2014, 6, 7751-7758.	8.0	106
38	Hierarchically porous Au nanostructures with interconnected channels for efficient mass transport in electrocatalytic CO ₂ reduction. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5680-5685.	7.1	97
39	Self-Assembly-Induced Formation of High-Density Silicon Oxide Memristor Nanostructures on Graphene and Metal Electrodes. Nano Letters, 2012, 12, 1235-1240.	9.1	89
40	Controllable Singlet–Triplet Energy Splitting of Graphene Quantum Dots through Oxidation: From Phosphorescence to TADF. Advanced Materials, 2020, 32, e2000936.	21.0	86
41	Scalable Functionalized Graphene Nano-platelets as Tunable Cathodes for High-performance Lithium Rechargeable Batteries. Scientific Reports, 2013, 3, 1506.	3.3	84
42	2D transition metal dichalcogenide nanomaterials: advances, opportunities, and challenges in multi-functional polymer nanocomposites. Journal of Materials Chemistry A, 2020, 8, 845-883.	10.3	83
43	Battery-free, wireless soft sensors for continuous multi-site measurements of pressure and temperature from patients at risk for pressure injuries. Nature Communications, 2021, 12, 5008.	12.8	83
44	Continuous 3D Titanium Nitride Nanoshell Structure for Solarâ€Đriven Unbiased Biocatalytic CO ₂ Reduction. Advanced Energy Materials, 2019, 9, 1900029.	19.5	81
45	Apertureless scanning near-field optical microscopy: a comparison between homodyne and heterodyne approaches. Journal of the Optical Society of America B: Optical Physics, 2006, 23, 823.	2.1	80
46	Bandgap Widening of Phase Quilted, 2D MoS ₂ by Oxidative Intercalation. Advanced Materials, 2015, 27, 3152-3158.	21.0	76
47	Optically Fabricated Three Dimensional Nanofluidic Mixers for Microfluidic Devices. Nano Letters, 2005, 5, 1351-1356.	9.1	72
48	Highly Efficient Electronic Sensitization of Non-oxidized Graphene Flakes on Controlled Pore-loaded WO3 Nanofibers for Selective Detection of H2S Molecules. Scientific Reports, 2015, 5, 8067.	3.3	70
49	Simple Preparation of Highâ€Quality Graphene Flakes without Oxidation Using Potassium Salts. Small, 2011, 7, 864-868.	10.0	69
50	Conformable Solidâ€Index Phase Masks Composed of Highâ€Aspectâ€Ratio Micropillar Arrays and Their Application to 3D Nanopatterning. Advanced Materials, 2011, 23, 860-864.	21.0	69
51	3D nanostructured N-doped TiO ₂ photocatalysts with enhanced visible absorption. Nanoscale, 2018, 10, 9747-9751.	5.6	67
52	Efficient Solid‣tate Photoluminescence of Graphene Quantum Dots Embedded in Boron Oxynitride for ACâ€Electroluminescent Device. Advanced Materials, 2018, 30, e1802951.	21.0	66
53	Factors Affecting the Exfoliation of Graphite Intercalation Compounds for Graphene Synthesis. Chemistry of Materials, 2015, 27, 2067-2073.	6.7	65
54	Strength dependence of epoxy composites on the average filler size of non-oxidized graphene flake. Carbon, 2017, 113, 379-386.	10.3	63

#	Article	IF	CITATIONS
55	Flexible temperature sensors made of aligned electrospun carbon nanofiber films with outstanding sensitivity and selectivity towards temperature. Materials Horizons, 2021, 8, 1488-1498.	12.2	61
56	Three-Dimensional Nanofabrication with Elastomeric Phase Masks. Journal of Physical Chemistry B, 2007, 111, 12945-12958.	2.6	58
57	Flexible Near-Field Nanopatterning with Ultrathin, Conformal Phase Masks on Nonplanar Substrates for Biomimetic Hierarchical Photonic Structures. ACS Nano, 2016, 10, 4609-4617.	14.6	58
58	Compositional engineering of solution-processed BiVO4 photoanodes toward highly efficient photoelectrochemical water oxidation. Nano Energy, 2018, 43, 244-252.	16.0	57
59	Human skin-inspired integrated multidimensional sensors based on highly anisotropic structures. Materials Horizons, 2020, 7, 2378-2389.	12.2	56
60	Fast P3HT Exciton Dissociation and Absorption Enhancement of Organic Solar Cells by PEG-Functionalized Graphene Quantum Dots. Small, 2016, 12, 994-999.	10.0	55
61	Highly Conductive and Fracture-Resistant Epoxy Composite Based on Non-oxidized Graphene Flake Aerogel. ACS Applied Materials & Interfaces, 2018, 10, 37507-37516.	8.0	54
62	2D and 3D nanostructuring strategies for thermoelectric materials. Nanoscale, 2019, 11, 19684-19699.	5.6	54
63	Chemical strain formation through anion substitution in Cu ₂ WS ₄ for efficient electrocatalysis of water dissociation. Journal of Materials Chemistry A, 2018, 6, 7786-7793.	10.3	51
64	2D MoO ₃ Nanosheets Synthesized by Exfoliation and Oxidation of MoS ₂ for High Contrast and Fast Response Time Electrochromic Devices. ACS Sustainable Chemistry and Engineering, 2020, 8, 11276-11282.	6.7	51
65	A self-heated silicon nanowire array: selective surface modification with catalytic nanoparticles by nanoscale Joule heating and its gas sensing applications. Nanoscale, 2013, 5, 6851.	5.6	50
66	Lattice Strain Formation through Spin oupled Shells of MoS ₂ on Mo ₂ C for Bifunctional Oxygen Reduction and Oxygen Evolution Reaction Electrocatalysts. Advanced Materials Interfaces, 2019, 6, 1900948.	3.7	50
67	Soft-Contact Optical Lithography Using Transparent Elastomeric Stamps and Application to Nanopatterned Organic Light-Emitting Devices. Advanced Functional Materials, 2005, 15, 1435-1439.	14.9	49
68	Size and pH dependent photoluminescence of graphene quantum dots with low oxygen content. RSC Advances, 2016, 6, 97990-97994.	3.6	49
69	Continuous Network of Phase-Tuned Nickel Sulfide Nanostructures for Electrocatalytic Water Splitting. ACS Applied Nano Materials, 2019, 2, 5061-5070.	5.0	48
70	Monolithic 3D titania with ultrathin nanoshell structures for enhanced photocatalytic activity and recyclability. Nanoscale, 2013, 5, 10384.	5.6	47
71	Facile synthesis of hierarchical porous WO ₃ nanofibers having 1D nanoneedles and their functionalization with non-oxidized graphene flakes for selective detection of acetone molecules. RSC Advances, 2015, 5, 7584-7588.	3.6	46
72	Rapid, Highâ€Resolution 3D Interference Printing of Multilevel Ultralong Nanochannel Arrays for Highâ€Throughput Nanofluidic Transport. Advanced Materials, 2015, 27, 8000-8006.	21.0	45

#	Article	IF	CITATIONS
73	Layered Ternary and Quaternary Transition Metal Chalcogenide Based Catalysts for Water Splitting. Catalysts, 2018, 8, 551.	3.5	45
74	Quenchingâ€Resistant Solidâ€State Photoluminescence of Graphene Quantum Dots: Reduction of Ï€â~'Ï€ Stacking by Surface Functionalization with POSS, PEG, and HDA. Advanced Functional Materials, 2021, 31, 2102741.	14.9	45
75	Multifunctional Polymer Nanocomposites Reinforced by 3D Continuous Ceramic Nanofillers. ACS Nano, 2018, 12, 9126-9133.	14.6	44
76	lon-Exchange Mechanism of Layered Transition-Metal Oxides: Case Study of LiNi _{0.5} Mn _{0.5} O ₂ . Inorganic Chemistry, 2014, 53, 8083-8087.	4.0	43
77	Low-Cost Black Phosphorus Nanofillers for Improved Thermoelectric Performance in PEDOT:PSS Composite Films. ACS Applied Materials & Interfaces, 2018, 10, 17957-17962.	8.0	42
78	Three-Dimensional Nanostructures Formed by Single Step, Two-Photon Exposures through Elastomeric Penrose Quasicrystal Phase Masks. Nano Letters, 2008, 8, 2236-2244.	9.1	41
79	Moisture Barrier Composites Made of Nonâ€Oxidized Graphene Flakes. Small, 2015, 11, 3124-3129.	10.0	41
80	Radiation Resistant Vanadium-Graphene Nanolayered Composite. Scientific Reports, 2016, 6, 24785.	3.3	41
81	Tailored Combination of Low Dimensional Catalysts for Efficient Oxygen Reduction and Evolution in Li–O ₂ Batteries. ChemSusChem, 2016, 9, 2080-2088.	6.8	39
82	Flexible thermoelectric films with high power factor made of non-oxidized graphene flakes. 2D Materials, 2019, 6, 045019.	4.4	39
83	Molded transparent photopolymers and phase shift optics for fabricating three dimensional nanostructures. Optics Express, 2007, 15, 6358.	3.4	37
84	Antireflection Behavior of Multidimensional Nanostructures Patterned Using a Conformable Elastomeric Phase Mask in a Single Exposure Step. Small, 2010, 6, 1981-1985.	10.0	37
85	Highly dispersed carbon nanotubes in organic media for polymer:fullerene photovoltaic devices. Carbon, 2012, 50, 40-46.	10.3	37
86	Conformal phase masks made of polyurethane acrylate with optimized elastic modulus for 3D nanopatterning. Journal of Materials Chemistry C, 2014, 2, 2316.	5.5	37
87	Nano-graphite platelet loaded with LiFePO4 nanoparticles used as the cathode in a high performance Li-ion battery. Carbon, 2012, 50, 1966-1971.	10.3	36
88	Understanding the Origin of Ultrasharp Sub-bandgap Luminescence from Zero-Dimensional Inorganic Perovskite Cs ₄ PbBr ₆ . ACS Applied Energy Materials, 2020, 3, 192-199.	5.1	36
89	Highâ€Contrast Optical Modulation from Strainâ€Induced Nanogaps at 3D Heterogeneous Interfaces. Advanced Science, 2020, 7, 1903708	11.2	36
90	Multiphoton luminescent graphene quantum dots for in vivo tracking of human adipose-derived stem cells. Nanoscale, 2016, 8, 8512-8519.	5.6	35

#	Article	IF	CITATIONS
91	Anomalous thermoelectricity of pure ZnO from 3D continuous ultrathin nanoshell structures. Nanoscale, 2018, 10, 3046-3052.	5.6	35
92	Conformal coating of titanium suboxide on carbon nanotube networks by atomic layer deposition for inverted organic photovoltaic cells. Carbon, 2012, 50, 4483-4488.	10.3	34
93	Nanopatterning with conformable phase masks. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 166, 149-154.	3.9	33
94	Enhanced electrical properties in carbon nanotube/poly (3-hexylthiophene) nanocomposites formed through non-covalent functionalization. Nano Research, 2011, 4, 1129-1135.	10.4	33
95	Rational Control of Diffraction and Interference from Conformal Phase Gratings: Toward Highâ€Resolution 3D Nanopatterning. Advanced Optical Materials, 2014, 2, 1213-1220.	7.3	33
96	Suppressing buoyant force: New avenue for long-term durability of oxygen evolution catalysts. Nano Energy, 2018, 54, 184-191.	16.0	33
97	Rational Design of All Resistive Multifunctional Sensors with Stimulus Discriminability. Advanced Functional Materials, 2022, 32, .	14.9	33
98	The effects of the crystalline orientation of Cu domains on the formation of nanoripple arrays in CVD-grown graphene on Cu. Journal of Materials Chemistry C, 2013, 1, 7819.	5.5	32
99	Design and application of carbon nanomaterials for photoactive and charge transport layers in organic solar cells. Nano Convergence, 2016, 3, 8.	12.1	32
100	Monolithic Bi _{1.5} Sb _{0.5} Te ₃ ternary alloys with a periodic 3D nanostructure for enhancing thermoelectric performance. Journal of Materials Chemistry C, 2017, 5, 8974-8980.	5.5	32
101	Primary hepatocyte imaging by multiphoton luminescent graphene quantum dots. Chemical Communications, 2015, 51, 8041-8043.	4.1	30
102	Extraordinary Enhancement of UV Absorption in TiO ₂ Nanoparticles Enabled by Low-Oxidized Graphene Nanodots. Journal of Physical Chemistry C, 2018, 122, 12114-12121.	3.1	30
103	Origin of extraordinary luminescence shift in graphene quantum dots with varying excitation energy: An experimental evidence of localized sp2 carbon subdomain. Carbon, 2017, 118, 524-530.	10.3	29
104	Ultrahigh resolution and color gamut with scattering-reducing transmissive pixels. Nature Communications, 2019, 10, 4782.	12.8	29
105	Growth of serpentine carbon nanotubes on quartz substrates and their electrical properties. Nano Research, 2008, 1, 427-433.	10.4	28
106	Patternable PEDOT nanofilms with grid electrodes for transparent electrochromic devices targeting thermal camouflage. Nano Convergence, 2015, 2, 19.	12.1	28
107	Direct Optical Fabrication of Fluorescent, Multilevel 3D Nanostructures for Highly Efficient Chemosensing Platforms. Advanced Functional Materials, 2016, 26, 7170-7177.	14.9	28
108	Atomic Layer Deposition of Inorganic Thin Films on 3D Polymer Nanonetworks. Applied Sciences (Switzerland), 2019, 9, 1990.	2.5	28

#	Article	IF	CITATIONS
109	Complementary nâ€Type and pâ€Type Graphene Films for High Power Factor Thermoelectric Generators. Advanced Functional Materials, 2020, 30, 2001760.	14.9	28
110	Optically Activated 3D Thin‧hell TiO ₂ for Super‧ensitive Chemoresistive Responses: Toward Visible Light Activation. Advanced Science, 2021, 8, 2001883.	11.2	28
111	High-performance functional nanocomposites using 3D ordered and continuous nanostructures generated from proximity-field nanopatterning. Functional Composites and Structures, 2019, 1, 032002.	3.4	27
112	Improving electrochemical active area of MoS2 via attached on 3D-ordered structures for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2019, 44, 28143-28150.	7.1	27
113	Toward highly efficient luminescence in graphene quantum dots for optoelectronic applications. Chemical Physics Reviews, 2021, 2, .	5.7	27
114	Three dimensional nanoporous density graded materials formed by optical exposures through conformable phase masks. Applied Physics Letters, 2006, 89, 253101.	3.3	26
115	The effect of sintering conditions and ZrN volume fraction on the mechanical properties of spark plasma sintered W/ZrN composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 552, 481-485.	5.6	26
116	3D ordered carbon/SnO2 hybrid nanostructures for energy storage applications. Electrochimica Acta, 2018, 288, 108-114.	5.2	26
117	Recent advances in lithographic fabrication of micro-/nanostructured polydimethylsiloxanes and their soft electronic applications. Journal of Semiconductors, 2019, 40, 111605.	3.7	26
118	3D periodic polyimide nano-networks for ultrahigh-rate and sustainable energy storage. Energy and Environmental Science, 2021, 14, 5894-5902.	30.8	26
119	Microstructure and mechanical properties of SiC-nanowire-augmented tungsten composites. Journal of Alloys and Compounds, 2011, 509, 9060-9064.	5.5	25
120	Rapid and Largeâ€6cale Fabrication of Full Color Woodpile Photonic Crystals via Interference from a Conformal Multilevel Phase Mask. Advanced Functional Materials, 2019, 29, 1904971.	14.9	24
121	Multi-redox phenazine/non-oxidized graphene/cellulose nanohybrids as ultrathick cathodes for high-energy organic batteries. Nano Research, 2021, 14, 1382-1389.	10.4	24
122	Conformally Coated Nickel Phosphide on 3D, Ordered Nanoporous Nickel for Highly Active and Durable Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2020, 8, 17116-17123.	6.7	24
123	Large-area metal foams with highly ordered sub-micrometer-scale pores for potential applications in energy areas. Materials Letters, 2014, 129, 174-177.	2.6	23
124	Long-range Stripe Nanodomains in Epitaxial (110) BiFeO3 Thin Films on (100) NdGaO3 Substrate. Scientific Reports, 2017, 7, 4857.	3.3	23
125	Enhancing the Performance of Surface Plasmon Resonance Biosensor via Modulation of Electron Density at the Graphene–Gold Interface. Advanced Materials Interfaces, 2018, 5, 1800433	3.7	23
126	Extremely large, non-oxidized graphene flakes based on spontaneous solvent insertion into graphite intercalation compounds. Carbon, 2018, 139, 309-316.	10.3	23

#	Article	IF	CITATIONS
127	Breaking the elastic limit of piezoelectric ceramics using nanostructures: A case study using ZnO. Nano Energy, 2020, 78, 105259.	16.0	23
128	Blue emission at atomically sharp 1D heterojunctions between graphene and h-BN. Nature Communications, 2020, 11, 5359.	12.8	23
129	High-Angle Tilt Boundary Graphene Domain Recrystallized from Mobile Hot-Wire-Assisted Chemical Vapor Deposition System. Nano Letters, 2014, 14, 4352-4359.	9.1	22
130	Highly Efficient UV–Visible Photocatalyst from Monolithic 3D Titania/Graphene Quantum Dot Heterostructure Linked by Aminosilane. Advanced Sustainable Systems, 2019, 3, 1900084.	5.3	22
131	Emergence of New Density–Strength Scaling Law in 3D Hollow Ceramic Nanoarchitectures. Small, 2018, 14, e1802239.	10.0	21
132	Fundamental principles and development of proximity-field nanopatterning toward advanced 3D nanofabrication. Nano Research, 2021, 14, 2965-2980.	10.4	21
133	Synthesis and applications of WO ₃ nanosheets: the importance of phase, stoichiometry, and aspect ratio. Nanoscale Advances, 2021, 3, 5166-5182.	4.6	21
134	Tunable organic transistors that use microfluidic source and drain electrodes. Applied Physics Letters, 2003, 83, 2067-2069.	3.3	19
135	Flexible Protective Film: Ultrahard, Yet Flexible Hybrid Nanocomposite Reinforced by 3D Inorganic Nanoshell Structures. Advanced Functional Materials, 2021, 31, 2010254.	14.9	19
136	Monolithic Lead Halide Perovskite Photoelectrochemical Cell with 9.16% Applied Bias Photon-to-Current Efficiency. ACS Energy Letters, 2022, 7, 320-327.	17.4	19
137	Graded-Density Reservoirs for Accessing High Stress Low Temperature Material States. Astrophysics and Space Science, 2007, 307, 269-272.	1.4	18
138	Coupled Lattice Polarization and Ferromagnetism in Multiferroic NiTiO ₃ Thin Films. ACS Applied Materials & Interfaces, 2017, 9, 21879-21890.	8.0	18
139	Fluorescence Modulation of Graphene Quantum Dots Near Structured Silver Nanofilms. ACS Applied Materials & Interfaces, 2018, 10, 14079-14086.	8.0	18
140	Simultaneous Enhancement of Thermopower and Electrical Conductivity through Isovalent Substitution of Cerium in Bismuth Selenide Thermoelectric Materials. ACS Applied Materials & Interfaces, 2019, 11, 44026-44035.	8.0	18
141	Focused Electric-Field Polymer Writing: Toward Ultralarge, Multistimuli-Responsive Membranes. ACS Nano, 2020, 14, 12173-12183.	14.6	18
142	Rationally Designed TiO ₂ Nanostructures of Continuous Pore Network for Fastâ€Responding and Highly Sensitive Acetone Sensor. Small Methods, 2021, 5, e2100941.	8.6	18
143	Generation of Cellular Micropatterns on a Singleâ€≺scp>Layered Graphene Film. Macromolecular Bioscience, 2014, 14, 314-319.	4.1	17
144	Blue Graphene Quantum Dots with High Color Purity by Controlling Subdomain Formation for Light-Emitting Devices. ACS Applied Nano Materials, 2020, 3, 6469-6477.	5.0	17

#	Article	IF	CITATIONS
145	Continuous 3D-nanopatterned Ni–Mo solid solution as a free-standing electrocatalyst for the hydrogen evolution reaction in alkaline medium. Journal of Materials Chemistry A, 2021, 9, 7767-7773.	10.3	17
146	Three-Dimensional, Submicron Porous Electrode with a Density Gradient to Enhance Charge Carrier Transport. ACS Nano, 2022, 16, 9762-9771.	14.6	17
147	Thick, three-dimensional nanoporous density-graded materials formed by optical exposures of photopolymers with controlled levels of absorption. Applied Optics, 2007, 46, 6350.	2.1	16
148	Amplification of hot electron flow by the surface plasmon effect on metal–insulator–metal nanodiodes. Nanotechnology, 2015, 26, 445201.	2.6	16
149	Fabrication of Nanoshell-Based 3D Periodic Structures by Templating Process using Solution-derived ZnO. Nanoscale Research Letters, 2017, 12, 419.	5.7	16
150	Proximity field nanopatterning of azopolymer thin films. Nanotechnology, 2010, 21, 165301.	2.6	15
151	Solution-phase phosphorus substitution for enhanced oxygen evolution reaction in Cu ₂ WS ₄ . RSC Advances, 2019, 9, 234-239.	3.6	15
152	Interdigitated Three-Dimensional Heterogeneous Nanocomposites for High-Performance Mechanochromic Smart Membranes. ACS Nano, 2022, 16, 68-77.	14.6	15
153	Mechanoresponsive scatterers for high-contrast optical modulation. Nanophotonics, 2022, 11, 2737-2762.	6.0	14
154	Soft Elastomeric Nanopillar Stamps for Enhancing Absorption in Organic Thinâ€Film Solar Cells. Small, 2013, 9, 369-374.	10.0	13
155	Analysis of contact resistance in single-walled carbon nanotube channel and graphene electrodes in a thin film transistor. Nano Convergence, 2017, 4, 35.	12.1	12
156	3D ordered nanoelectrodes for energy conversion applications: thermoelectric, piezoelectric, and electrocatalytic applications. Journal of the Korean Ceramic Society, 2021, 58, 379-398.	2.3	12
157	Enhanced Oxygen Evolution Reaction by Efficient Bubble Dynamics of Aligned Nonoxidized Graphene Aerogels. ACS Sustainable Chemistry and Engineering, 2021, 9, 10326-10334.	6.7	12
158	Photolithographic realization of target nanostructures in 3D space by inverse design of phase modulation. Science Advances, 2022, 8, .	10.3	12
159	Non-covalently functionalized single walled carbon nanotube/poly(3,4ethylenedioxythiophene):poly(styrenesulfonate) nanocomposites for organic photovoltaic cell. Synthetic Metals, 2013, 181, 92-97.	3.9	11
160	A novel method for transferring graphene onto PDMS. Applied Surface Science, 2015, 358, 70-74.	6.1	11
161	Scalable Fabrication of High-Performance Thin-Shell Oxide Nanoarchitected Materials <i>via</i> Proximity-Field Nanopatterning. ACS Nano, 2021, 15, 3960-3970.	14.6	11
162	Heterodyne apertureless near-field scanning optical microscopy on periodic gold nanowells. Optics Express, 2007, 15, 4098.	3.4	10

#	Article	IF	CITATIONS
163	Identification of Metalloporphyrins with High Sensitivity Using Graphene-Enhanced Resonance Raman Scattering. Langmuir, 2014, 30, 2960-2967.	3.5	10
164	Metal-induced fluorescence properties of three-dimensionally ordered macroporous silver inverse opal platforms. Applied Physics Letters, 2016, 108, .	3.3	10
165	Metallic phase transition metal dichalcogenide quantum dots showing different optical charge excitation and decay pathways. NPG Asia Materials, 2021, 13, .	7.9	10
166	Proximity-field nanopatterning for high-performance chemical and mechanical sensor applications based on 3D nanostructures. Applied Physics Reviews, 2022, 9, .	11.3	10
167	Reversible creation of nanostructures between identical or different species of materials. Applied Physics A: Materials Science and Processing, 2012, 108, 41-52.	2.3	9
168	Direct Patterning and Biofunctionalization of a Largeâ€Area Pristine Graphene Sheet. Chemistry - an Asian Journal, 2015, 10, 568-571.	3.3	9
169	Tuning the electrode work function via a vapor-phase deposited ultrathin polymer film. Journal of Materials Chemistry C, 2016, 4, 831-839.	5.5	9
170	Ferroelectric Domain Studies of Patterned (001) BiFeO3 by Angle-Resolved Piezoresponse Force Microscopy. Scientific Reports, 2018, 8, 203.	3.3	9
171	Transfer-free growth of polymer-derived graphene on dielectric substrate from mobile hot-wire-assisted dual heating system. Carbon, 2018, 127, 41-46.	10.3	9
172	Effect of nucleation density on the crystallinity of graphene grown from mobile hot-wire-assisted CVD. 2D Materials, 2019, 6, 011001.	4.4	9
173	Unassisted overall water splitting with a solarâ€toâ€hydrogen efficiency of over 10% by coupled lead halide perovskite photoelectrodes. , 2023, 5, .		9
174	Controlled three-dimensional interconnected capillary structures for liquid repellency engineering. RSC Advances, 2016, 6, 61909-61914.	3.6	8
175	Multi-stacked electrodes employing aluminum coated tissue papers and non-oxidized graphene nanoflakes for high performance lithium–sulfur batteries. RSC Advances, 2016, 6, 60537-60545.	3.6	8
176	Significantly Enhanced Thermoelectric Performance of Graphene through Atomic-Scale Defect Engineering via Mobile Hot-Wire Chemical Vapor Deposition Systems. ACS Applied Materials & Interfaces, 2021, 13, 24304-24313.	8.0	8
177	Extraordinary Strong Fluorescence Evolution in Phosphor on Graphene. Advanced Materials, 2016, 28, 1657-1662.	21.0	7
178	Improving intrinsic electrocatalytic activity of layered transition metal chalcogenides as electrocatalysts for water splitting. Current Opinion in Electrochemistry, 2022, 34, 100982.	4.8	7
179	Boosting bifunctional oxygen electrocatalysis of graphitic C ₃ N ₄ using non-covalently functionalized non-oxidized graphene aerogels as catalyst supports. Journal of Materials Chemistry A, 2022, 10, 15689-15697.	10.3	7
180	Growth of graphene on non-catalytic substrate by controlling the vapor pressure of catalytic nickel. Carbon, 2019, 143, 294-299.	10.3	6

#	Article	IF	CITATIONS
181	Formation of a Top Electrode on Vertical Si Nanowire Devices Using Graphene as a Supporting Layer. Applied Physics Express, 2012, 5, 105103.	2.4	5
182	Transparent polymer nanocomposite with three-dimensional ZnO thin-shell with high UV-shielding performance. Functional Composites and Structures, 2021, 3, 025007.	3.4	5
183	Photonic systems formed by proximity field nanopatterning. , 2005, , .		3
184	Helix-Coiled Gold Nanowires for Molecular Sensing. Journal of Nanoscience and Nanotechnology, 2012, 12, 3501-3505.	0.9	3
185	Graphene Quantum Dots: Controllable Singlet–Triplet Energy Splitting of Graphene Quantum Dots through Oxidation: From Phosphorescence to TADF (Adv. Mater. 31/2020). Advanced Materials, 2020, 32, 2070233.	21.0	3
186	Improved Crystallinity of Graphene Grown on Cu/Ni (111) through Sequential Mobile Hot-Wire Heat Treatment. Nano Letters, 2022, 22, 5198-5206.	9.1	3
187	Simultaneously grown single wall carbon nanotube channel and electrodes in a thin film transistor. MRS Communications, 2012, 2, 79-83.	1.8	2
188	Tailored Combination of Low Dimensional Catalysts for Efficient Oxygen Reduction and Evolution in Li-O2 Batteries. ChemSusChem, 2016, 9, 2007-2007.	6.8	2
189	Hydrogen-Assisted Fast Growth of Large Graphene Grains by Recrystallization of Nanograins. ACS Omega, 2020, 5, 31502-31507.	3.5	1
190	Recent Advances in High-performance Functional Ceramics using 3D Nanostructuring Techniques. Ceramist, 2019, 22, 230-242.	0.1	1
191	Hydrothermal Synthesis of Er-Doped Luminescent TiO2 Nanoparticles ChemInform, 2003, 34, no.	0.0	0
192	Simultaneous Exfoliation and Dispersion of Graphene/Carbon Nanotube via Intercalation Reaction and Its Application as Conductive Composite Film. Composites Research, 2016, 29, 104-110.	0.1	0
193	Graded-Density Reservoirs for Accessing High Stress Low Temperature Material States. , 2006, , 269-272.		0