
Paul C Lambert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4951189/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Potential bias introduced by not including multiple time-scales in survival analysis: a simulation study. Communications in Statistics Part B: Simulation and Computation, 2024, 53, 993-1006.	1.2	2
2	Case-ascertainment of acute myocardial infarction hospitalizations in cancer patients: a cohort study using English linked electronic health data. European Heart Journal Quality of Care & Clinical Outcomes, 2022, 8, 86-95.	4.0	5
3	A way to explore the existence of "immortals―in cancer registry data – An illustration using data from ICBP SURVMARK-2. Cancer Epidemiology, 2022, 76, 102085.	1.9	3
4	Five ways to improve international comparisons of cancer survival: lessons learned from ICBP SURVMARK-2. British Journal of Cancer, 2022, 126, 1224-1228.	6.4	3
5	Non-parametric estimation of reference adjusted, standardised probabilities of all-cause death and death due to cancer for population group comparisons. BMC Medical Research Methodology, 2022, 22, 2.	3.1	3
6	Minimum sample size calculations for external validation of a clinical prediction model with a timeâ€ŧoâ€event outcome. Statistics in Medicine, 2022, 41, 1280-1295.	1.6	34
7	Assessing the impact of including variation in general population mortality on standard errors of relative survival and loss in life expectancy. BMC Medical Research Methodology, 2022, 22, 130.	3.1	3
8	Generating high-fidelity synthetic time-to-event datasets to improve data transparency and accessibility. BMC Medical Research Methodology, 2022, 22, .	3.1	6
9	Reference-Adjusted Loss in Life Expectancy for Population-Based Cancer Patient Survival Comparisons—with an Application to Colon Cancer in Sweden. Cancer Epidemiology Biomarkers and Prevention, 2022, 31, 1720-1726.	2.5	4
10	On the choice of timescale for other cause mortality in a competing risk setting using flexible parametric survival models. Biometrical Journal, 2022, 64, 1161-1177.	1.0	3
11	Survival trends in patients diagnosed with colon and rectal cancer in the nordic countries 1990–2016: The NORDCAN survival studies. European Journal of Cancer, 2022, 172, 76-84.	2.8	15
12	Capturing simple and complex time-dependent effects using flexible parametric survival models: A simulation study. Communications in Statistics Part B: Simulation and Computation, 2021, 50, 3777-3793.	1.2	19
13	Understanding the impact of sex and stage differences on melanoma cancer patient survival: a SEER-based study. British Journal of Cancer, 2021, 124, 671-677.	6.4	23
14	Exploring the impact of cancer registry completeness on international cancer survival differences: a simulation study. British Journal of Cancer, 2021, 124, 1026-1032.	6.4	12
15	Relaxing the assumption of constant transition rates in a multi-state model in hospital epidemiology. BMC Medical Research Methodology, 2021, 21, 16.	3.1	3
16	A multistate model incorporating estimation of excess hazards and multiple time scales. Statistics in Medicine, 2021, 40, 2139-2154.	1.6	5
17	Estimating restricted mean survival time and expected life-years lost in the presence of competing risks within flexible parametric survival models. BMC Medical Research Methodology, 2021, 21, 52.	3.1	9
18	Individual participant data metaâ€analysis for external validation, recalibration, and updating of a flexible parametric prognostic model. Statistics in Medicine, 2021, 40, 3066-3084.	1.6	10

#	Article	IF	CITATIONS
19	The impact of excluding or including Death Certificate Initiated (DCI) cases on estimated cancer survival: A simulation study. Cancer Epidemiology, 2021, 71, 101881.	1.9	9
20	Direct modelling of age standardized marginal relative survival through incorporation of time-dependent weights. BMC Medical Research Methodology, 2021, 21, 84.	3.1	2
21	Data Resource Profile: The Virtual Cardio-Oncology Research Initiative (VICORI) linking national English cancer registration and cardiovascular audits. International Journal of Epidemiology, 2021, , .	1.9	7
22	Inverse probability weighting and doubly robust standardization in the relative survival framework. Statistics in Medicine, 2021, 40, 6069-6092.	1.6	1
23	Understanding disparities in cancer prognosis: An extension of mediation analysis to the relative survival framework. Biometrical Journal, 2021, 63, 341-353.	1.0	7
24	Development of a dynamic interactive web tool to enhance understanding of multi-state model analyses: MSMplus. BMC Medical Research Methodology, 2021, 21, 262.	3.1	2
25	Trends in cancer survival in the Nordic countries 1990–2016: the NORDCAN survival studies. Acta Oncológica, 2020, 59, 1266-1274.	1.8	46
26	Reference-adjusted and standardized all-cause and crude probabilities as an alternative to net survival in population-based cancer studies. International Journal of Epidemiology, 2020, 49, 1614-1623.	1.9	10
27	Impact on survival of modelling increased surgical resection rates in patients with non-small-cell lung cancer and cardiovascular comorbidities: a VICORI study. British Journal of Cancer, 2020, 123, 471-479.	6.4	9
28	Can different definitions of date of cancer incidence explain observed international variation in cancer survival? An ICBP SURVMARK-2 study. Cancer Epidemiology, 2020, 67, 101759.	1.9	7
29	Marginal measures and causal effects using the relative survival framework. International Journal of Epidemiology, 2020, 49, 619-628.	1.9	10
30	Estimation of age-standardized net survival, even when age-specific data are sparse. Cancer Epidemiology, 2020, 67, 101745.	1.9	10
31	Temporal recalibration for improving prognostic model development and risk predictions in settings where survival is improving over time. International Journal of Epidemiology, 2020, 49, 1316-1325.	1.9	26
32	Illustration of different modelling assumptions for estimation of loss in expectation of life due to cancer. BMC Medical Research Methodology, 2019, 19, 145.	3.1	17
33	Conditional crude probabilities of death for English cancer patients. British Journal of Cancer, 2019, 121, 883-889.	6.4	8
34	Progress in cancer survival, mortality, and incidence in seven high-income countries 1995–2014 (ICBP) Tj ETQc	0 0 0 rgB1 10.7	- /Oyerlock 1 034

35	Temporal trends in treatmentâ€related incidence of diseases of the circulatory system among Hodgkin lymphoma patients. International Journal of Cancer, 2019, 145, 1200-1208.	5.1	3
36	Loss in life expectancy and gain in life years as measures of cancer impact. Cancer Epidemiology, 2019, 60, 168-173.	1.9	15

#	Article	IF	CITATIONS
37	Understanding the impact of socioeconomic differences in colorectal cancer survival: potential gain in life-years. British Journal of Cancer, 2019, 120, 1052-1058.	6.4	37
38	Potential gain in life years for Swedish women with breast cancer if stage and survival differences between education groups could be eliminated – Three what-if scenarios. Breast, 2019, 45, 75-81.	2.2	10
39	Robustness of individual and marginal model-based estimates: A sensitivity analysis of flexible parametric models. Cancer Epidemiology, 2019, 58, 17-24.	1.9	31
40	Adjusting Expected Mortality Rates Using Information From a Control Population: An Example Using Socioeconomic Status. American Journal of Epidemiology, 2018, 187, 828-836.	3.4	13
41	Loss in working years after a breast cancer diagnosis. British Journal of Cancer, 2018, 118, 738-743.	6.4	11
42	Assessing methods for dealing with treatment switching in clinical trials: A follow-up simulation study. Statistical Methods in Medical Research, 2018, 27, 765-784.	1.5	35
43	Direct likelihood inference on the causeâ€specific cumulative incidence function: A flexible parametric regression modelling approach. Statistics in Medicine, 2018, 37, 82-97.	1.6	16
44	Contemporarily Treated Patients With Hodgkin Lymphoma Have Childbearing Potential in Line With Matched Comparators. Journal of Clinical Oncology, 2018, 36, 2718-2725.	1.6	13
45	InterPreT cancer survival: A dynamic web interactive prediction cancer survival tool for health-care professionals and cancer epidemiologists. Cancer Epidemiology, 2018, 56, 46-52.	1.9	10
46	Association of fractures with the incidence of amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2017, 18, 419-425.	1.7	12
47	Flexible parametric modelling of the causeâ€specific cumulative incidence function. Statistics in Medicine, 2017, 36, 1429-1446.	1.6	34
48	Parametric multistate survival models: Flexible modelling allowing transitionâ€specific distributions with application to estimating clinically useful measures of effect differences. Statistics in Medicine, 2017, 36, 4719-4742.	1.6	92
49	Estimating the impact of a cancer diagnosis on life expectancy by socio-economic group for a range of cancer types in England. British Journal of Cancer, 2017, 117, 1419-1426.	6.4	41
50	Reply to D. Pulte et al. Journal of Clinical Oncology, 2017, 35, 696-697.	1.6	1
51	A Flexible Parametric Competing-risks Model Using a Direct Likelihood Approach for the Cause-specific Cumulative Incidence Function. The Stata Journal, 2017, 17, 462-489.	2.2	29
52	Loss in working years after a breast cancer diagnosis: A population-based study (Sweden) Journal of Clinical Oncology, 2017, 35, 209-209.	1.6	0
53	stpm2cr: A flexible parametric competing risks model using a direct likelihood approach for the cause-specific cumulative incidence function. The Stata Journal, 2017, 17, 462-489.	2.2	10
54	The estimation and modelling of cause-specific cumulative incidence functions using time-dependent weights. The Stata Journal, 2017, 17, 181-207.	2.2	9

#	Article	IF	CITATIONS
55	Strcs: A Command for Fitting Flexible Parametric Survival Models on the Log-hazard Scale. The Stata Journal, 2016, 16, 989-1012.	2.2	16
56	Transmission of Neurodegenerative Disorders Through Blood Transfusion. Annals of Internal Medicine, 2016, 165, 316.	3.9	40
57	Joint modelling of longitudinal and survival data: incorporating delayed entry and an assessment of model misspecification. Statistics in Medicine, 2016, 35, 1193-1209.	1.6	24
58	A flexible parametric approach to examining spatial variation in relative survival. Statistics in Medicine, 2016, 35, 5448-5463.	1.6	12
59	Life Expectancy of Patients With Chronic Myeloid Leukemia Approaches the Life Expectancy of the General Population. Journal of Clinical Oncology, 2016, 34, 2851-2857.	1.6	625
60	Reply to Letter to the Editor by Remontetet al Statistics in Medicine, 2015, 34, 3378-3380.	1.6	0
61	The use of restricted cubic splines to approximate complex hazard functions in the analysis of time-to-event data: a simulation study. Journal of Statistical Computation and Simulation, 2015, 85, 777-793.	1.2	80
62	Risk and Cause of Death in Patients Diagnosed With Myeloproliferative Neoplasms in Sweden Between 1973 and 2005: A Population-Based Study. Journal of Clinical Oncology, 2015, 33, 2288-2295.	1.6	106
63	Comparison of different approaches to estimating age standardized net survival. BMC Medical Research Methodology, 2015, 15, 64.	3.1	57
64	The loss in expectation of life after colon cancer: a population-based study. BMC Cancer, 2015, 15, 412.	2.6	25
65	Temporal Trends in Chronic Myeloid Leukemia Outcome Using the Loss in Expectation of Life: A Swedish Population-Based Study. Blood, 2015, 126, 2779-2779.	1.4	2
66	A general framework for parametric survival analysis. Statistics in Medicine, 2014, 33, 5280-5297.	1.6	64
67	The Application of Cure Models in the Presence of Competing Risks. Epidemiology, 2014, 25, 742-748.	2.7	11
68	Adjusting Survival Time Estimates to Account for Treatment Switching in Randomized Controlled Trials—an Economic Evaluation Context. Medical Decision Making, 2014, 34, 387-402.	2.4	72
69	Estimating the cure proportion of malignant melanoma, an alternative approach to assess long term survival: A population-based study. Cancer Epidemiology, 2014, 38, 93-99.	1.9	20
70	Familial Coaggregation of Alzheimer's Disease and Parkinson's Disease: Systematic Review and Meta-Analysis. Neuroepidemiology, 2014, 42, 69-80.	2.3	9
71	Survival and cure of acute myeloid leukaemia in <scp>E</scp> ngland, 1971â€2006: a population–based study. British Journal of Haematology, 2013, 162, 509-516.	2.5	177
72	Flexible parametric modelling of cause-specific hazards to estimate cumulative incidence functions. BMC Medical Research Methodology, 2013, 13, 13.	3.1	94

#	Article	IF	CITATIONS
73	Adjusting for measurement error in baseline prognostic biomarkers included in a time-to-event analysis: a joint modelling approach. BMC Medical Research Methodology, 2013, 13, 146.	3.1	20
74	Simulating biologically plausible complex survival data. Statistics in Medicine, 2013, 32, 4118-4134.	1.6	97
75	Estimating the loss in expectation of life due to cancer using flexible parametric survival models. Statistics in Medicine, 2013, 32, 5286-5300.	1.6	113
76	Proportion cured models applied to 23 cancer sites in Norway. International Journal of Cancer, 2013, 132, 1700-1710.	5.1	29
77	The impact of under and over-recording of cancer on death certificates in a competing risks analysis: A simulation study. Cancer Epidemiology, 2013, 37, 11-19.	1.9	25
78	How can we make cancer survival statistics more useful for patients and clinicians: An illustration using localized prostate cancer in Sweden. Cancer Causes and Control, 2013, 24, 505-515.	1.8	39
79	Bed Occupancy Rates and Hospital-Acquired <i>Clostridium difficile</i> Infection: A Cohort Study. Infection Control and Hospital Epidemiology, 2013, 34, 1062-1069.	1.8	15
80	Temporal Trends in Mortality From Diseases of the Circulatory System After Treatment for Hodgkin Lymphoma: A Population-Based Cohort Study in Sweden (1973 to 2006). Journal of Clinical Oncology, 2013, 31, 1435-1441.	1.6	22
81	Estimating net survival in populationâ€based cancer studies. International Journal of Cancer, 2013, 133, 519-521.	5.1	24
82	Modelling Time to Death or Discharge in Neonatal Care: An Application of Competing Risks. Paediatric and Perinatal Epidemiology, 2013, 27, 426-433.	1.7	18
83	Joint Modeling of Longitudinal and Survival Data. The Stata Journal, 2013, 13, 165-184.	2.2	88
84	Flexible Parametric Illness-Death Models. The Stata Journal, 2013, 13, 759-775.	2.2	13
85	stgenreg : A <i>Stata</i> Package for General Parametric Survival Analysis. Journal of Statistical Software, 2013, 53, .	3.7	27
86	Screening and cervical cancer cure: population based cohort study. BMJ: British Medical Journal, 2012, 344, e900-e900.	2.3	153
87	Projecting Cancer Incidence using Age-period-cohort Models Incorporating Restricted Cubic Splines. International Journal of Biostatistics, 2012, 8, 33.	0.7	14
88	Flexible parametric joint modelling of longitudinal and survival data. Statistics in Medicine, 2012, 31, 4456-4471.	1.6	56
89	Comparison of methods for calculating relative survival in population-based studies. Cancer Epidemiology, 2012, 36, 16-21.	1.9	62
90	Adjusting for the proportion of cancer deaths in the general population when using relative survival: A sensitivity analysis. Cancer Epidemiology, 2012, 36, 148-152.	1.9	26

#	Article	IF	CITATIONS
91	Colorectal cancer survival in socioeconomic groups in England: Variation is mainly in the short term after diagnosis. European Journal of Cancer, 2012, 48, 46-53.	2.8	43
92	Partitioning of excess mortality in population-based cancer patient survival studies using flexible parametric survival models. BMC Medical Research Methodology, 2012, 12, 86.	3.1	20
93	Individual patient data meta-analysis of survival data using Poisson regression models. BMC Medical Research Methodology, 2012, 12, 34.	3.1	66
94	Fitting and Modeling Cure in Population-Based Cancer Studies within the Framework of Flexible Parametric Survival Models. The Stata Journal, 2012, 12, 623-638.	2.2	12
95	Simulating Complex Survival Data. The Stata Journal, 2012, 12, 674-687.	2.2	24
96	Quantifying differences in breast cancer survival between England and Norway. Cancer Epidemiology, 2011, 35, 526-533.	1.9	36
97	Choosing the relative survival method for cancer survival estimation. European Journal of Cancer, 2011, 47, 2202-2210.	2.8	120
98	Rebuttal to editorial saying cancer survival statistics are misleading. BMJ: British Medical Journal, 2011, 343, d4214-d4214.	2.3	4
99	Breast Cancer, Sickness Absence, Income and Marital Status. A Study on Life Situation 1 Year Prior Diagnosis Compared to 3 and 5 Years after Diagnosis. PLoS ONE, 2011, 6, e18040.	2.5	68
100	Assessing methods for dealing with treatment switching in randomised controlled trials: a simulation study. BMC Medical Research Methodology, 2011, 11, 4.	3.1	82
101	Estimating and modelling cure in population-based cancer studies within the framework of flexible parametric survival models. BMC Medical Research Methodology, 2011, 11, 96.	3.1	98
102	A population-based comparison of the survival of patients with colorectal cancer in England, Norway and Sweden between 1996 and 2004. Gut, 2011, 60, 1087-1093.	12.1	68
103	Prognostic value of admission blood glucose concentration and diabetes diagnosis on survival after acute myocardial infarction: results from 4702 index cases in routine practice. Clinical Science, 2010, 118, 527-535.	4.3	18
104	Meta-analysis of individual participant data: rationale, conduct, and reporting. BMJ: British Medical Journal, 2010, 340, c221-c221.	2.3	1,256
105	Estimating the crude probability of death due to cancer and other causes using relative survival models. Statistics in Medicine, 2010, 29, 885-895.	1.6	96
106	Temporal trends in the proportion cured among adults diagnosed with acute myeloid leukaemia in Sweden 1973–2001, a populationâ€based study. British Journal of Haematology, 2010, 148, 918-924.	2.5	20
107	Further Development of Flexible Parametric Models for Survival Analysis. The Stata Journal, 2009, 9, 265-290.	2.2	590
108	Placental Weight and Breast Cancer Survival in Young Women. Cancer Epidemiology Biomarkers and Prevention, 2009, 18, 777-783.	2.5	5

#	Article	IF	CITATIONS
109	Oral Prednisolone for Preschool Children with Acute Virus-Induced Wheezing. New England Journal of Medicine, 2009, 360, 329-338.	27.0	296
110	Temporal Trends in the Proportion Cured Among Patients Diagnosed with Acute Myeloid Leukemia in Sweden 1973-2001, a Population-Based Study Blood, 2009, 114, 1378-1378.	1.4	0
111	Comments on â€~Trying to be precise about vagueness' by Stephen Senn, <i>Statistics in Medicine</i> 2007; 26 :1417–1430. Statistics in Medicine, 2008, 27, 619-622.	1.6	1
112	Metaâ€analysis of continuous outcomes combining individual patient data and aggregate data. Statistics in Medicine, 2008, 27, 1870-1893.	1.6	222
113	Estimating the cost-effectiveness of an intervention in a clinical trial when partial cost information is available: a Bayesian approach. Health Economics (United Kingdom), 2008, 17, 67-81.	1.7	19
114	Relative survival: what can cardiovascular disease learn from cancer?. European Heart Journal, 2008, 29, 941-947.	2.2	48
115	Different strategies for screening and prevention of type 2 diabetes in adults: cost effectiveness analysis. BMJ: British Medical Journal, 2008, 336, 1180-1185.	2.3	239
116	Analysis, power and design of antimicrobial resistance surveillance studies, taking account of inter-centre variation and turnover. Journal of Antimicrobial Chemotherapy, 2008, 62, ii29-ii39.	3.0	12
117	Changes in the Risk of Death After HIV Seroconversion Compared With Mortality in the General Population. JAMA - Journal of the American Medical Association, 2008, 300, 51.	7.4	404
118	Where Next for Evidence Synthesis of Prognostic Marker Studies? Improving the Quality and Reporting of Primary Studies to Facilitate Clinically Relevant Evidence-Based Results. , 2007, , 39-58.		5
119	Cost-Effectiveness Analysis Using Data from Multinational Trials: The Use of Bivariate Hierarchical Modeling. Medical Decision Making, 2007, 27, 471-490.	2.4	33
120	Pharmacological and lifestyle interventions to prevent or delay type 2 diabetes in people with impaired glucose tolerance: systematic review and meta-analysis. BMJ: British Medical Journal, 2007, 334, 299.	2.3	930
121	Estimating and modeling the cure fraction in population-based cancer survival analysis. Biostatistics, 2007, 8, 576-594.	1.5	201
122	Modeling of the Cure Fraction in Survival Studies. The Stata Journal, 2007, 7, 351-375.	2.2	95
123	Temporal trends in the proportion cured for cancer of the colon and rectum: A population-based study using data from the Finnish Cancer Registry. International Journal of Cancer, 2007, 121, 2052-2059.	5.1	42
124	Predicting costs over time using Bayesian Markov chain Monte Carlo methods: an application to early inflammatory polyarthritis. Health Economics (United Kingdom), 2007, 16, 37-56.	1.7	39
125	Evidenceâ€based sample size calculations based upon updated metaâ€analysis. Statistics in Medicine, 2007, 26, 2479-2500.	1.6	123
126	Flexible parametric models for relative survival, with application in coronary heart disease. Statistics in Medicine, 2007, 26, 5486-5498.	1.6	202

#	Article	IF	CITATIONS
127	Bivariate random-effects meta-analysis and the estimation of between-study correlation. BMC Medical Research Methodology, 2007, 7, 3.	3.1	184
128	Comment on article by Browne and Draper. Bayesian Analysis, 2006, 1, 543.	3.0	13
129	How vague is vague? A simulation study of the impact of the use of vague prior distributions in MCMC using WinBUGS. Statistics in Medicine, 2005, 24, 2401-2428.	1.6	407
130	Bayesian implementation of a genetic model-free approach to the meta-analysis of genetic association studies. Statistics in Medicine, 2005, 24, 3845-3861.	1.6	48
131	Additive and multiplicative covariate regression models for relative survival incorporating fractional polynomials for time-dependent effects. Statistics in Medicine, 2005, 24, 3871-3885.	1.6	60
132	Meta-analysis of heterogeneously reported trials assessing change from baseline. Statistics in Medicine, 2005, 24, 3823-3844.	1.6	173
133	Urine Protein Estimation in Hypertensive Pregnancy: Which Thresholds and Laboratory Assay Best Predict Clinical Outcome?. Hypertension in Pregnancy, 2005, 24, 291-302.	1.1	43
134	A Bayesian approach to evaluating net clinical benefit allowed for parameter uncertainty. Journal of Clinical Epidemiology, 2005, 58, 26-40.	5.0	49
135	What to add to nothing? Use and avoidance of continuity corrections in meta-analysis of sparse data. Statistics in Medicine, 2004, 23, 1351-1375.	1.6	1,376
136	The analysis of peak expiratory flow data using a three-level hierarchical model. Statistics in Medicine, 2004, 23, 3821-3839.	1.6	13
137	A Systematic Review of Molecular and Biological Tumor Markers in Neuroblastoma. Clinical Cancer Research, 2004, 10, 4-12.	7.0	179
138	Sensitivity analyses allowed more appropriate and reliable meta-analysis conclusions for multiple outcomes when missing data was present. Journal of Clinical Epidemiology, 2004, 57, 911-924.	5.0	40
139	Providing more up-to-date estimates of patient survival: a comparison of standard survival analysis with period analysis using life-table methods and proportional hazards models. Journal of Clinical Epidemiology, 2004, 57, 14-20.	5.0	13
140	A Bayesian approach to Markov modelling in cost-effectiveness analyses: application to taxane use in advanced breast cancer. Journal of the Royal Statistical Society Series A: Statistics in Society, 2003, 166, 389-405.	1.1	40
141	Efficacy of a short course of parent-initiated oral prednisolone for viral wheeze in children aged 1–5 years: randomised controlled trial. Lancet, The, 2003, 362, 1433-1438.	13.7	193
142	Randomised controlled trial of the effectiveness of feedback in improving test ordering in general practice. Scandinavian Journal of Primary Health Care, 2003, 21, 219-223.	1.5	31
143	Validation of the DCA® 2000 Microalbumin:Creatinine Ratio Urinanalyzer for Its Use in Pregnancy and Preeclampsia. Hypertension in Pregnancy, 2003, 22, 77-92.	1.1	15
144	Urinary microalbumin/creatinine ratios: reference range in uncomplicated pregnancy. Clinical Science, 2003, 104, 103-107.	4.3	7

#	Article	IF	CITATIONS
145	Urinary microalbumin/creatinine ratios: reference range in uncomplicated pregnancy. Clinical Science, 2003, 104, 103.	4.3	15
146	Meta-analysis of rare and adverse event data. Expert Review of Pharmacoeconomics and Outcomes Research, 2002, 2, 367-379.	1.4	107
147	Analysis of ambulatory blood pressure monitor data using a hierarchical model incorporating restricted cubic splines and heterogeneous within-subject variances. Statistics in Medicine, 2001, 20, 3789-3805.	1.6	25
148	EFFECT OF CONCENTRATION AND BIOCHEMICAL ASSAY ON THE ACCURACY OF URINE DIPSTICKS IN HYPERTENSIVE PREGNANCIES. Hypertension in Pregnancy, 2001, 20, 205-217.	1.1	30
149	Birth weight and 24-hour ambulatory blood pressure in nonproteinuric hypertensive pregnancy. American Journal of Obstetrics and Gynecology, 2000, 183, 633-637.	1.3	40
150	The role of observer error in antenatal dipstick proteinuria analysis. BJOG: an International Journal of Obstetrics and Gynaecology, 1999, 106, 1177-1180.	2.3	42
151	Incidence of non-specific abdominal pain in children during school term: population survey based on discharge diagnoses. BMJ: British Medical Journal, 1999, 318, 1455-1455.	2.3	17
152	Automated, ambulatory, or conventional blood pressure measurement in pregnancy: Which is the better predictor of severe hypertension?. American Journal of Obstetrics and Gynecology, 1998, 178, 521-526.	1.3	84
153	A Bayesian Approach to a General Regression Model for ROC Curves. Medical Decision Making, 1998, 18, 436-443.	2.4	26
154	Automated blood pressure measurement as a predictor of proteinuric pre-eclampsia. BJOG: an International Journal of Obstetrics and Gynaecology, 1997, 104, 559-562.	2.3	21
155	Obtaining long-term stage-specific relative survival estimates in the presence of incomplete historical stage information. British Journal of Cancer, 0, , .	6.4	0