
Scott D Peacor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4949826/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A REVIEW OF TRAIT-MEDIATED INDIRECT INTERACTIONS IN ECOLOGICAL COMMUNITIES. Ecology, 2003, 84, 1083-1100.	1.5	1,336
2	Predator-prey naÃ⁻veté, antipredator behavior, and the ecology of predator invasions. Oikos, 2010, 119, 610-621.	1.2	561
3	REVISITING THE CLASSICS: CONSIDERING NONCONSUMPTIVE EFFECTS IN TEXTBOOK EXAMPLES OF PREDATOR–PREY INTERACTIONS. Ecology, 2008, 89, 2416-2425.	1.5	401
4	LARGE NONLETHAL EFFECTS OF AN INVASIVE INVERTEBRATE PREDATOR ON ZOOPLANKTON POPULATION GROWTH RATE. Ecology, 2007, 88, 402-412.	1.5	214
5	TRAIT-MEDIATED INDIRECT INTERACTIONS IN A SIMPLE AQUATIC FOOD WEB. Ecology, 1997, 78, 1146-1156.	1.5	188
6	PREDATOR EFFECTS ON AN ASSEMBLAGE OF CONSUMERS THROUGH INDUCED CHANGES IN CONSUMER FORAGING BEHAVIOR. Ecology, 2000, 81, 1998-2010.	1.5	120
7	Positive effect of predators on prey growth rate through induced modifications of prey behaviour. Ecology Letters, 2002, 5, 77-85.	3.0	109
8	Non onsumptive predator effects on prey population size: A dearth of evidence. Journal of Animal Ecology, 2020, 89, 1302-1316.	1.3	88
9	LETHAL AND NONLETHAL PREDATOR EFFECTS ON AN HERBIVORE GUILD MEDIATED BY SYSTEM PRODUCTIVITY. Ecology, 2006, 87, 347-361.	1.5	87
10	CONSUMPTIVE AND NONCONSUMPTIVE EFFECTS OF PREDATORS ON METACOMMUNITIES OF COMPETING PREY. Ecology, 2008, 89, 2426-2435.	1.5	83
11	Costs of predator-induced phenotypic plasticity: a graphical model for predicting the contribution of nonconsumptive and consumptive effects of predators on prey. Oecologia, 2013, 171, 1-10.	0.9	82
12	Non-lethal effect of the invasive predator Bythotrephes longimanus on Daphnia mendotae. Freshwater Biology, 2006, 51, 1070-1078.	1.2	80
13	HOW DEPENDENT ARE SPECIES-PAIR INTERACTION STRENGTHS ON OTHER SPECIES IN THE FOOD WEB?. Ecology, 2004, 85, 2754-2763.	1.5	68
14	Behavioural response of bullfrog tadpoles to chemical cues of predation risk are affected by cue age and water source. Hydrobiologia, 2006, 573, 39-44.	1.0	61
15	Invasive species impacts on ecosystem structure and function: A comparison of Oneida Lake, New York, USA, before and after zebra mussel invasion. Ecological Modelling, 2009, 220, 3194-3209.	1.2	56
16	The spread, establishment and impacts of the spiny water flea, Bythotrephes longimanus, in temperate North America: a synopsis of the special issue. Biological Invasions, 2011, 13, 2423-2432.	1.2	53
17	Opportunities for behavioral rescue under rapid environmental change. Global Change Biology, 2019, 25, 3110-3120.	4.2	53
18	A framework and standardized terminology to facilitate the study of predationâ€risk effects. Ecology, 2020, 101, e03152.	1.5	52

SCOTT D PEACOR

#	Article	IF	CITATIONS
19	Experimental and model analyses of the effects of competition on individual size variation in wood frog (Rana sylvatica) tadpoles. Journal of Animal Ecology, 2006, 75, 990-999.	1.3	51
20	CONTEXT DEPENDENCE OF NONLETHAL EFFECTS OF A PREDATOR ON PREY GROWTH. Israel Journal of Zoology, 2004, 50, 139-167.	0.2	44
21	Scaling-up anti-predator phenotypic responses of prey: impacts over multiple generations in a complex aquatic community. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 122-128.	1.2	40
22	Species-specific responses of planktivorous fish to the introduction of a new piscivore: implications for prey fitness. Freshwater Biology, 2007, 52, 1793-1806.	1.2	39
23	Invasive species impacts on ecosystem structure and function: A comparison of the Bay of Quinte, Canada, and Oneida Lake, USA, before and after zebra mussel invasion. Ecological Modelling, 2009, 220, 3182-3193.	1.2	36
24	Light-dependent predation by the invertebrate planktivore Bythotrephes longimanus. Canadian Journal of Fisheries and Aquatic Sciences, 2009, 66, 1748-1757.	0.7	36
25	Bias in metaâ€analyses using Hedges' <i>d</i> . Ecosphere, 2018, 9, e02419.	1.0	36
26	Phenotypic Plasticity Opposes Species Invasions by Altering Fitness Surface. PLoS Biology, 2006, 4, e372.	2.6	35
27	The invasive predator Bythotrephes induces changes in the vertical distribution of native copepods in Lake Michigan. Biological Invasions, 2011, 13, 2533-2545.	1.2	34
28	Finely tuned response of native prey to an invasive predator in a freshwater system. Ecology, 2013, 94, 1449-1455.	1.5	33
29	Phosphorus targets and eutrophication objectives in Saginaw Bay: A 35year assessment. Journal of Great Lakes Research, 2014, 40, 4-10.	0.8	31
30	An assessment of statistical methods for nonindependent data in ecological metaâ€analyses. Ecology, 2020, 101, e03184.	1.5	31
31	Variable performance of individuals: the role of population density and endogenously formed landscape heterogeneity. Journal of Animal Ecology, 2003, 72, 725-735.	1.3	29
32	MECHANISMS OF NONLETHAL PREDATOR EFFECT ON COHORT SIZE VARIATION: ECOLOGICAL AND EVOLUTIONARY IMPLICATIONS. Ecology, 2007, 88, 1536-1547.	1.5	29
33	The effect of size-dependent growth and environmental factors on animal size variability. Theoretical Population Biology, 2007, 71, 80-94.	0.5	25
34	The growth–mortality tradeoff: evidence from anuran larvae and consequences for species distributions. Oecologia, 2006, 149, 194-202.	0.9	23
35	Plastic response to a proxy cue of predation risk when direct cues are unreliable. Ecology, 2013, 94, 2237-2248.	1.5	19
36	Factors affecting the vertical distribution of the zooplankton assemblage in Lake Michigan: The role of the invasive predator Bythotrephes longimanus. Journal of Great Lakes Research, 2015, 41, 115-124.	0.8	18

SCOTT D PEACOR

#	Article	IF	CITATIONS
37	Predator presence dramatically reduces copepod abundance through conditionâ€mediated nonâ€consumptive effects. Freshwater Biology, 2016, 61, 1020-1031.	1.2	15
38	A new computational system, DOVE (Digital Organisms in a Virtual Ecosystem), to study phenotypic plasticity and its effects in food webs. Ecological Modelling, 2007, 205, 13-28.	1.2	13
39	Temperature gradients, not food resource gradients, affect growth rate of migrating Daphnia mendotae in Lake Michigan. Journal of Great Lakes Research, 2010, 36, 345-350.	0.8	13
40	Mussel-derived stimulation of benthic filamentous algae: The importance of nutrients and spatial scale. Journal of Great Lakes Research, 2017, 43, 69-79.	0.8	13
41	The influence of light and nutrients on benthic filamentous algal growth: A case study of Saginaw Bay, Lake Huron. Journal of Great Lakes Research, 2014, 40, 64-74.	0.8	12
42	Statistical tests for biological interactions: A comparison of permutation tests and analysis of variance. Acta Oecologica, 2008, 33, 66-72.	0.5	11
43	An assessment of statistical methods for nonâ€independent data in ecological metaâ€analyses: Reply. Ecology, 2022, 103, e03578.	1.5	9
44	The implications of adaptive prey behaviour for ecological communities. , 2012, , 131-160.		8
45	Spatial and temporal patterns of macroscopic benthic primary producers in Saginaw Bay, Lake Huron. Journal of Great Lakes Research, 2014, 40, 53-63.	0.8	7
46	Behavioral response of Lake Michigan Daphnia mendotae to Mysis relicta. Journal of Great Lakes Research, 2005, 31, 144-154.	0.8	6
47	Predator Effects on an Assemblage of Consumers through Induced Changes in Consumer Foraging Behavior. Ecology, 2000, 81, 1998.	1.5	6
48	Longâ€ŧerm survey data reveal large predator and temperature effects on population growth of	1.6	3

⁴⁸ multiple zooplankton species. Limnology and Oceanography, 2020, 65, 694-706.