Juan Carmelo Gomez-Fernandez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4948442/publications.pdf

Version: 2024-02-01

212 papers

6,687 citations

46 h-index

50244

70 g-index

214 all docs

214 docs citations

times ranked

214

4854 citing authors

#	Article	IF	Citations
1	Ca2+ bridges the C2 membrane-binding domain of protein kinase $\hat{\text{Cl}}_{\pm}$ directly to phosphatidylserine. EMBO Journal, 1999, 18, 6329-6338.	3.5	323
2	Intrinsic protein-lipid interactions. Journal of Molecular Biology, 1982, 157, 597-618.	2.0	268
3	Intrinsic protein-lipid interactions. FEBS Letters, 1979, 98, 211-223.	1.3	215
4	Signaling through C2 domains: More than one lipid target. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 1536-1547.	1.4	189
5	Protein kinase C regulatory domains: The art of decoding many different signals in membranes. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2006, 1761, 633-654.	1.2	108
6	Specificity of nucleotide binding and coupled reactions utilising the mitochondrial ATPase. Biochimica Et Biophysica Acta - Bioenergetics, 1978, 504, 364-383.	0.5	107
7	C2 Domains of Protein Kinase C Isoforms \hat{l}_{\pm} , \hat{l}_{-}^2 , and \hat{l}_{-}^3 : \hat{a}_{-}^2 . Activation Parameters and Calcium Stoichiometries of the Membrane-Bound State. Biochemistry, 2002, 41, 11411-11424.	1.2	102
8	Structural and mechanistic insights into the association of PKCα-C2 domain to PtdIns(4,5)P ₂ . Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 6603-6607.	3.3	99
9	Protein-lipid interaction. Biochimica Et Biophysica Acta - Biomembranes, 1980, 598, 502-516.	1.4	98
10	Structure of the C2 domain from novel protein kinase Cϵ. A membrane binding model for Ca2+-independent C2 domains. Journal of Molecular Biology, 2001, 311, 837-849.	2.0	97
11	A New Phosphatidylinositol 4,5-Bisphosphate-binding Site Located in the C2 Domain of Protein Kinase Cα. Journal of Biological Chemistry, 2003, 278, 4972-4980.	1.6	92
12	Influence of liposome charge and composition on their interaction with human blood serum proteins. Molecular and Cellular Biochemistry, 1993, 120, 119-126.	1.4	91
13	C2 Domain of Protein Kinase Cα:  Elucidation of the Membrane Docking Surface by Site-Directed Fluorescence and Spin Labeling. Biochemistry, 2003, 42, 1254-1265.	1.2	91
14	A study on the interactions of surfactin with phospholipid vesicles. Biochimica Et Biophysica Acta - Biomembranes, 1999, 1418, 307-319.	1.4	90
15	Calorimetric and infrared spectroscopic studies of the interaction of alpha-tocopherol and alpha-tocopheryl acetate with phospholipid vesicles. FEBS Journal, 1986, 158, 141-147.	0.2	88
16	A thermodynamic analysis of the interaction between the mitochondrial coupling adenosine triphosphatase and its naturally occurring inhibitor protein. Biochemical Journal, 1978, 176, 967-975.	1.7	86
17	Structure of the Alzheimer beta-amyloid peptide (25-35) and its interaction with negatively charged phospholipid vesicles. FEBS Journal, 1999, 265, 744-753.	0.2	84
18	The Simultaneous Production of Phosphatidic Acid and Diacylglycerol Is Essential for the Translocation of Protein Kinase Clµ to the Plasma Membrane in RBL-2H3 Cells. Molecular Biology of the Cell, 2003, 14, 4885-4895.	0.9	81

#	Article	IF	Citations
19	Interaction of diacylglycerols with phosphatidylcholine vesicles as studied by differential scanning calorimetry and fluorescence probe depolarization. Biochemistry, 1988, 27, 9030-9036.	1.2	79
20	Apparent pKa of the fatty acids within ordered mixtures of model human stratum corneum lipids. Pharmaceutical Research, 1995, 12, 1614-1617.	1.7	76
21	Retinoic Acid Binds to the C2-Domain of Protein Kinase Cαâ€. Biochemistry, 2003, 42, 8774-8779.	1.2	76
22	The Cancer Chemopreventive Agent Resveratrol Is Incorporated into Model Membranes and Inhibits Protein Kinase C α Activity. Archives of Biochemistry and Biophysics, 1999, 372, 382-388.	1.4	74
23	Additional Binding Sites for Anionic Phospholipids and Calcium Ions in the Crystal Structures of Complexes of the C2 Domain of Protein Kinase Cl̂±. Journal of Molecular Biology, 2002, 320, 277-291.	2.0	74
24	Diacylglycerols, multivalent membrane modulators. Chemistry and Physics of Lipids, 2007, 148, 1-25.	1.5	72
25	Edelfosine Is Incorporated into Rafts and Alters Their Organization. Journal of Physical Chemistry B, 2008, 112, 11643-11654.	1.2	70
26	Stability of Liposomes on Long Term Storage. Journal of Pharmacy and Pharmacology, 2011, 42, 397-400.	1.2	69
27	Infrared spectroscopic study of the interaction of diacylglycerol with phosphatidylserine in the presence of calcium. Lipids and Lipid Metabolism, 1993, 1169, 264-272.	2.6	67
28	Capsaicin affects the structure and phase organization of phospholipid membranes. Biochimica Et Biophysica Acta - Biomembranes, 1995, 1234, 225-234.	1.4	67
29	A differential scanning calorimetry study of the interaction of free fatty acids with phospholipid membranes. Chemistry and Physics of Lipids, 1987, 45, 75-91.	1.5	64
30	Structural insights into the Ca ²⁺ and PI(4,5)P ₂ binding modes of the C2 domains of rabphilin 3A and synaptotagmin 1. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20503-20508.	3.3	64
31	Protein-lipid interactions. FEBS Letters, 1979, 98, 224-228.	1.3	63
32	Localization of ?-Tocopherol in Membranes. Annals of the New York Academy of Sciences, 1989, 570, 109-120.	1.8	61
33	A differential scanning calorimetry study of the interaction of \hat{l} ±-tocopherol with mixtures of phospholipids. Biochimica Et Biophysica Acta - Biomembranes, 1987, 898, 214-222.	1.4	60
34	The phase behavior of mixed aqueous dispersions of dipalmitoyl derivatives of phosphatidylcholine and diacylglycerol. Biophysical Journal, 1994, 66, 1991-2004.	0.2	60
35	Characterization of the Membrane Binding Mode of the C2 Domain of PKCεâ€. Biochemistry, 2003, 42, 11661-11668.	1.2	60
36	Role of the Ca2+/Phosphatidylserine Binding Region of the C2 Domain in the Translocation of Protein Kinase Cî± to the Plasma Membrane. Journal of Biological Chemistry, 2003, 278, 10282-10290.	1.6	60

#	Article	IF	Citations
37	Identification of the Phosphatidylserine Binding Site in the C2 Domain that Is Important for PKCα Activation and in Vivo Cell Localization. Biochemistry, 2001, 40, 13898-13905.	1.2	59
38	The use of FT-IR for quantitative studies of the apparent pKa of lipid carboxyl groups and the dehydration degree of the phosphate group of phospholipids. Chemistry and Physics of Lipids, 1998, 96, 41-52.	1.5	58
39	Determination of the calcium-binding sites of the C2 domain of protein kinase Cl [±] that are critical for its translocation to the plasma membrane. Biochemical Journal, 1999, 337, 513-521.	1.7	58
40	The C2 Domain of PKCα Is a Ca2+-dependent PtdIns(4,5)P2 Sensing Domain: A New Insight into an Old Pathway. Journal of Molecular Biology, 2006, 362, 901-914.	2.0	57
41	The C2 Domains of Classical PKCs are Specific Ptdlns(4,5)P2-sensing Domains with Different Affinities for Membrane Binding. Journal of Molecular Biology, 2007, 371, 608-621.	2.0	51
42	Fluorescence study of the location and dynamics of \hat{l} ±-tocopherol in phospholipid vesicles. Biochimica Et Biophysica Acta - Biomembranes, 1989, 985, 26-32.	1.4	50
43	Interaction between \hat{l}_{\pm} -tocopherol and heteroacid phosphatidylcholines with different amounts of unsaturation. Biochimica Et Biophysica Acta - Biomembranes, 1996, 1279, 251-258.	1.4	50
44	Kinetic studies on the interaction of phosphatidylcholine liposomes with Triton X-100. Biochimica Et Biophysica Acta - Biomembranes, 1987, 902, 237-246.	1.4	48
45	Protein rotational diffusion and lipid structure of reconstituted systems of Ca2+-activated adenosine triphosphatase. Journal of Molecular Biology, 1980, 141, 119-132.	2.0	47
46	On the interaction of ubiquinones with phospholipid bilayers. FEBS Letters, 1981, 132, 19-22.	1.3	46
47	Nanodesign of new self-assembling core-shell gellan-transfersomes loading baicalin and in vivo evaluation of repair response in skin. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 569-579.	1.7	46
48	Triton X-100 solubilization of mitochondrial inner and outer membranes. Journal of Bioenergetics and Biomembranes, 1980, 12, 47-70.	1.0	45
49	Curcumin Disorders 1,2-Dipalmitoyl- <i>sn-</i> glycero-3-phosphocholine Membranes and Favors the Formation of Nonlamellar Structures by 1,2-Dielaidoyl- <i>sn</i> glycero-3-phosphoethanolamine. Journal of Physical Chemistry B, 2010, 114, 9778-9786.	1.2	45
50	Influence of vitamin E on phosphatidylethanolamine lipid polymorphism. Biochimica Et Biophysica Acta - Biomembranes, 1990, 1022, 194-202.	1.4	44
51	Fourier transform infrared spectroscopic studies on the secondary structure of the Ca2+-ATPase of sarcoplasmic reticulum. Biochimica Et Biophysica Acta - Biomembranes, 1989, 978, 305-312.	1.4	43
52	The ATP-dependent Membrane Localization of Protein Kinase Cα Is Regulated by Ca2+ Influx and Phosphatidylinositol 4,5-Bisphosphate in Differentiated PC12 Cells. Molecular Biology of the Cell, 2005, 16, 2848-2861.	0.9	43
53	A Biophysical Study of the Interaction of the Lipopeptide Antibiotic Iturin A with Aqueous Phospholipid Bilayers. Archives of Biochemistry and Biophysics, 2000, 377, 315-323.	1.4	41
54	Calorimetric Study of the Interaction of the C2 Domains of Classical Protein Kinase C Isoenzymes with Ca2+and Phospholipidsâ€. Biochemistry, 2004, 43, 11727-11739.	1.2	41

#	Article	IF	Citations
55	Intra-articular therapy of experimental arthritis with a derivative of triamcinolone acetonide incorporated in liposomes. Journal of Pharmacy and Pharmacology, 2011, 45, 576-578.	1.2	41
56	Lamellar Gel ($\hat{Ll^2}$) Phases of Ternary Lipid Composition Containing Ceramide and Cholesterol. Biophysical Journal, 2014, 106, 621-630.	0.2	41
57	Functions of the C-terminal domains of apoptosis-related proteins of the Bcl-2 family. Chemistry and Physics of Lipids, 2014, 183, 77-90.	1.5	40
58	Protein-lipid interactions and differential scanning calorimetric studies of bacteriorhodopsin reconstituted lipid-water systems. Biochimica Et Biophysica Acta - Biomembranes, 1982, 689, 283-289.	1.4	39
59	The phase behavior of aqueous dispersions of unsaturated mixtures of diacylglycerols and phospholipids. Biochimica Et Biophysica Acta - Biomembranes, 1998, 1373, 209-219.	1.4	39
60	Effect of Calcium and Phosphatidic Acid Binding on the C2 Domain of PKCα As Studied by Fourier Transform Infrared Spectroscopyâ€. Biochemistry, 1999, 38, 9667-9675.	1.2	39
61	The interaction of ubiquinone-10 and ubiquinol-10 with phospholipid bilayers. A study using differential scanning calorimetry and turbidity measurements. Biochimica Et Biophysica Acta - Biomembranes, 1985, 820, 19-26.	1.4	38
62	Role of the Lysine-rich Cluster of the C2 Domain in the Phosphatidylserine-dependent Activation of PKCα. Journal of Molecular Biology, 2004, 335, 1117-1129.	2.0	38
63	Structural characterization of the Rabphilin-3A–SNAP25 interaction. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5343-E5351.	3.3	37
64	Interaction of sphingosine and stearylamine with phosphatidylserine as studied by DSC and NMR. Biochimica Et Biophysica Acta - Biomembranes, 1993, 1153, 1-8.	1.4	36
65	Conformation of the C-Terminal Domain of the Pro-Apoptotic Protein Bax and Mutants and Its Interaction with Membranesâ€. Biochemistry, 2001, 40, 9983-9992.	1.2	36
66	The interaction of intrinsic proteins and lipids in biomembranes. Trends in Biochemical Sciences, 1982, 7, 67-70.	3.7	35
67	Molecular interactions between sphingomyelin and phosphatidylcholine in phospholipid vesicles. Biochimica Et Biophysica Acta - Biomembranes, 1988, 941, 55-62.	1.4	35
68	Correlation between Protein Kinase C α Activity and Membrane Phase Behavior. Biophysical Journal, 1999, 76, 916-927.	0.2	35
69	Distances between the functional sites of sarcoplasmic reticulum (Ca2+ + Mg2+)-ATPase and the lipid/water interface. Biochimica Et Biophysica Acta - Biomembranes, 1986, 863, 178-184.	1.4	34
70	The PtdIns(4,5)P2 Ligand Itself Influences the Localization of PKCα in the Plasma Membrane of Intact Living Cells. Journal of Molecular Biology, 2008, 377, 1038-1052.	2.0	34
71	Structural Study of the C2 Domains of the Classical PKC Isoenzymes Using Infrared Spectroscopy and Two-Dimensional Infrared Correlation Spectroscopyâ€. Biochemistry, 2003, 42, 11669-11681.	1.2	33
72	Molecular Mechanisms of PKC \hat{l} ± localization and Activation by Arachidonic Acid. The C2 Domain also Plays a Role. Journal of Molecular Biology, 2006, 357, 1105-1120.	2.0	33

#	Article	IF	Citations
73	α-Tocopherol Interacts with Natural Micelle-Forming Single-Chain Phospholipids Stabilizing the Bilayer Phase. Archives of Biochemistry and Biophysics, 1993, 306, 368-376.	1.4	32
74	Difference infrared spectroscopy of aqueous model and biological membranes using an infrared data station. Journal of Proteomics, 1980, 2, 315-323.	2.4	30
75	1,2-Dioleoylglycerol promotes calcium-induced fusion in phospholipid vesicles. Chemistry and Physics of Lipids, 1992, 62, 215-224.	1.5	30
76	Extensive Proteolytic Digestion of the (Ca2++Mg2+)-ATPase from Sarcoplasmic Reticulum Leads to a Highly Hydrophobic Proteinaceous Residue with a Mainly .alphaHelical Structure. Biochemistry, 1994, 33, 8247-8254.	1.2	30
77	Protein-lipid interactions. A nuclear magnetic resonance study of sarcoplasmic reticulum (calcium(2+), magnesium(2+) ion)-activated ATPase, lipophilin, and proteolipid apoprotein-lecithin systems and a comparison with the effects of cholesterol. Biochemistry, 1979, 18, 5892-5902.	1.2	28
78	Fluorescence study of a derivatized diacylglycerol incorporated in model membranes. Chemistry and Physics of Lipids, 1994, 69, 75-85.	1.5	28
79	The interaction of α-tocopherol with phosphatidylserine vesicles and calcium. Biochimica Et Biophysica Acta - Biomembranes, 1996, 1281, 23-30.	1.4	28
80	The interaction of coenzyme Q with phosphatidylethanolamine membranes. FEBS Journal, 2001, 259, 739-746.	0.2	28
81	A Comparison of the Membrane Binding Properties of C1B Domains of PKCγ, PKCδ, and PKCɛ. Biophysical Journal, 2009, 96, 3638-3647.	0.2	28
82	Redox State of Coenzyme Q ₁₀ Determines Its Membrane Localization. Journal of Physical Chemistry B, 2008, 112, 12696-12702.	1.2	27
83	Characterization of ruthenium red-binding sites of the Ca2+-ATPase from sarcoplasmic reticulum and their interaction with Ca2+-binding sites. Biochemical Journal, 1992, 287, 767-774.	1.7	25
84	Diffusivity and structural polymorphism in some model stratum corneum lipid systems. Biochimica Et Biophysica Acta - Biomembranes, 1993, 1150, 182-188.	1.4	25
85	The C2 domain of protein kinase Cl̂± is directly involved in the diacylglycerol-dependent binding of the C1 domain to the membrane. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2000, 1487, 246-254.	1.2	25
86	The C2 domains of classical and novel PKCs as versatile decoders of membrane signals. BioFactors, 2010, 36, 1-7.	2.6	25
87	A kinetic study of the interaction of vanadate with the Ca2+ + Mg2+-dependent ATPase from sarcoplasmic reticulum. Biochemical Journal, 1984, 221, 213-222.	1.7	24
88	A Fourier transform infrared spectroscopic study of the molecular interaction of ubiquinone-10 and ubiquinol-10 with bilayers of dipalmitoylphosphatidylcholine. Biochimica Et Biophysica Acta - Biomembranes, 1986, 861, 25-32.	1.4	24
89	Influence of the Physical State of the Membrane on the Enzymatic Activity and Energy of Activation of Protein Kinase C αâ€. Biochemistry, 1999, 38, 7747-7754.	1.2	24
90	Determination of the calcium-binding sites of the C2 domain of protein kinase $\hat{\text{Cl}}_{\pm}$ that are critical for its translocation to the plasma membrane. Biochemical Journal, 1999, 337, 513.	1.7	23

#	Article	IF	CITATIONS
91	An Infrared Spectroscopic Study of the Secondary Structure of Protein Kinase Cl̂± and Its Thermal Denaturationâ€. Biochemistry, 2004, 43, 2332-2344.	1.2	23
92	Effect of sphingosine and stearylamine on the interaction of phosphatidylserine with calcium. A study using DSC, FT-IR and 45Ca2+-binding. Biochimica Et Biophysica Acta - Biomembranes, 1995, 1236, 279-288.	1.4	22
93	The dissimilar effect of diacylglycerols on Ca(2+)-induced phosphatidylserine vesicle fusion. Biophysical Journal, 1995, 68, 558-566.	0.2	22
94	Aggregational behavior of aqueous dispersions of the antifungal lipopeptide iturin A. Peptides, 2001, 22, 1-5.	1.2	22
95	The Structure of the C-Terminal Domain of the Pro-Apoptotic Protein Bak and Its Interaction with Model Membranes. Biophysical Journal, 2002, 82, 233-243.	0.2	22
96	The vertical location of α-tocopherol in phosphatidylcholine membranes is not altered as a function of the degree of unsaturation of the fatty acyl chains. Physical Chemistry Chemical Physics, 2017, 19, 6731-6742.	1.3	22
97	Diacylglycerol, phosphatidylserine and Ca2+: a phase behavior study. Biochimica Et Biophysica Acta - Biomembranes, 1994, 1190, 264-272.	1.4	21
98	Structural characterization of the C2 domain of novel protein kinase CÎ μ . FEBS Journal, 2001, 268, 1107-1117.	0.2	21
99	Membrane Permeabilization Induced by Sphingosine: Effect of Negatively Charged Lipids. Biophysical Journal, 2014, 106, 2577-2584.	0.2	21
100	Interaction of retinol and retinoic acid with phospholipid membranes. A differential scanning calorimetry study. Biochimica Et Biophysica Acta - Biomembranes, 1992, 1106, 282-290.	1.4	20
101	A phase behavior study of mixtures of sphingosine with zwitterionic phospholipids. Biochimica Et Biophysica Acta - Biomembranes, 1994, 1194, 281-288.	1.4	20
102	A comparative study of the activation of protein kinase C \hat{l}_{\pm} by different diacylglycerol isomers. Biochemical Journal, 1999, 337, 387.	1.7	20
103	Study of the Secondary Structure of the C-Terminal Domain of the Antiapoptotic Protein Bcl-2 and Its Interaction with Model Membranesâ€,‡. Biochemistry, 2000, 39, 7744-7752.	1.2	20
104	The C2 domains of classical/conventional PKCs are specific PtdIns(4,5) <i>P</i> 2-sensing domains. Biochemical Society Transactions, 2007, 35, 1046-1048.	1.6	20
105	Capsaicin Fluidifies the Membrane and Localizes Itself near the Lipid–Water Interface. ACS Chemical Neuroscience, 2015, 6, 1741-1750.	1.7	20
106	Membrane docking of the C2 domain from protein kinase $\hat{\text{Cl}}_{\pm}$ as seen by polarized ATR-IR. The role of PIP2. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 684-695.	1.4	19
107	Intramolecular distances within the Ca2+-ATPase from sarcoplasmic reticulum as estimated through fluorescence energy transfer between probes. FEBS Journal, 1993, 217, 737-744.	0.2	18
108	A Triacyltrehalose Containing 2-Methyl-Branched Unsaturated Fatty Acyl Groups Isolated from Mycobacterium Fortuitum. Journal of General Microbiology, 1993, 139, 585-590.	2.3	18

#	Article	IF	CITATIONS
109	Diacylglycerols as activators of protein kinase C (Review). Molecular Membrane Biology, 2004, 21, 339-349.	2.0	18
110	The interaction of the Bax C-terminal domain with negatively charged lipids modifies the secondary structure and changes its way of insertion into membranes. Journal of Structural Biology, 2008, 164, 146-152.	1.3	18
111	Anticancer Agent Edelfosine Exhibits a High Affinity for Cholesterol and Disorganizes Liquid-Ordered Membrane Structures. Langmuir, 2018, 34, 8333-8346.	1.6	18
112	Calcium-induced aggregation of phosphatidylcholine vesicles containing free oleic acid. Chemistry and Physics of Lipids, 1988, 46, 259-266.	1.5	17
113	Effects of platelet-activating factor and related lipids on dielaidoylphosphatidylethanolamine by DSC, FTIR and NMR. Biochimica Et Biophysica Acta - Biomembranes, 1993, 1145, 284-292.	1.4	17
114	Influence of oleic acid on the structure of a mixture of hydrated model stratum corneum fatty acids and their soaps. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1994, 90, 225-234.	2.3	17
115	Retinoic Acid as a Modulator of the Activity of Protein Kinase Cα. Biochemistry, 2005, 44, 11353-11360.	1.2	17
116	Role of Phosphatidylserine and Diacylglycerol in the Fusion of Chromaffin Granules with Target Membranes. Archives of Biochemistry and Biophysics, 1994, 314, 205-216.	1.4	16
117	Interaction of the C-terminal domain of Bcl-2 family proteins with model membranes. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 2931-2939.	1.4	16
118	Classical protein kinases C are regulated by concerted interaction with lipids: the importance of phosphatidylinositol-4,5-bisphosphate. Biophysical Reviews, 2014, 6, 3-14.	1.5	16
119	Optimization of Innovative Three-Dimensionally-Structured Hybrid Vesicles to Improve the Cutaneous Delivery of Clotrimazole for the Treatment of Topical Candidiasis. Pharmaceutics, 2019, 11, 263.	2.0	16
120	Biophysical studies of the Pf1 coat protein in the filamentous phage, in detergent micelles, and in a membrane environment. Biochemistry, 1993, 32, 10720-10726.	1.2	15
121	The increase in positively charged residues in cecropin D-like Galleria mellonella favors its interaction with membrane models that imitate bacterial membranes. Archives of Biochemistry and Biophysics, 2017, 629, 54-62.	1.4	15
122	Influence of membrane fluidity on transport mediated by ubiquinones through phospholipid vesicles. Archives of Biochemistry and Biophysics, 1982, 218, 525-530.	1.4	14
123	The interaction of vitamin K1 with phospholipid vesicles. Biochimica Et Biophysica Acta - Biomembranes, 1986, 863, 185-192.	1.4	14
124	Phenolic Group of α-Tocopherol Anchors at the Lipid–Water Interface of Fully Saturated Membranes. Langmuir, 2018, 34, 3336-3348.	1.6	14
125	Insights into the Impact of a Membrane-Anchoring Moiety on the Biological Activities of Bivalent Compounds As Potential Neuroprotectants for Alzheimer's Disease. Journal of Medicinal Chemistry, 2018, 61, 777-790.	2.9	14
126	Metastability of dimiristoylphosphatidylethanolamine as studied by FT-IR and the effect of \hat{l}_{\pm} -tocopherol. Biochimica Et Biophysica Acta - Biomembranes, 1995, 1239, 213-225.	1.4	13

#	Article	IF	Citations
127	Modulation of the Membrane Orientation and Secondary Structure of the C-Terminal Domains of Bak and Bcl-2 by Lipidsâ€. Biochemistry, 2005, 44, 10796-10809.	1.2	13
128	Interaction of the C2 Domain from Protein Kinase CÎμ with Model Membranesâ€. Biochemistry, 2007, 46, 3183-3192.	1.2	13
129	Characterization of the steady-state calcium fluxes in skeletal sarcoplasmic reticulum vesicles. Role of the Ca2+ pump. FEBS Journal, 1990, 192, 347-354.	0.2	12
130	Influence of α-Tocopherol Incorporation on Ca2+-Induced Fusion of Phosphatidylserine Vesicles. Archives of Biochemistry and Biophysics, 1996, 333, 394-400.	1.4	12
131	Effects of the anti-neoplastic agent ET-18-OCH3 and some analogs on the biophysical properties of model membranes. International Journal of Pharmaceutics, 2006, 318, 28-40.	2.6	12
132	Phosphatidylinositol 4,5-Bisphosphate Decreases the Concentration of Ca2+, Phosphatidylserine and Diacylglycerol Required for Protein Kinase C α to Reach Maximum Activity. PLoS ONE, 2013, 8, e69041.	1.1	12
133	Both idebenone and idebenol are localized near the lipid–water interface of the membrane and increase its fluidity. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 1071-1081.	1.4	12
134	A comparison of the location in membranes of curcumin and curcumin-derived bivalent compounds with potential neuroprotective capacity for Alzheimer's disease. Colloids and Surfaces B: Biointerfaces, 2021, 199, 111525.	2.5	12
135	Mitochondrial ATPase inactivation by interaction with its substrate. Archives of Biochemistry and Biophysics, 1982, 215, 40-46.	1.4	11
136	A kinetic study of the irreversible inhibition of an enzyme measured in the presence of coupled enzymes. Fluorescein isothiocyanate as inhibitor of the adenosinetriphosphatase activity from sarcoplasmic reticulum. BBA - Proteins and Proteomics, 1986, 869, 8-15.	2.1	11
137	Fourier transform infrared spectroscopic study of mixtures of palmitic acid with dipalmitoylphosphatidylcholine using isotopic substitution. Chemistry and Physics of Lipids, 1992, 62, 19-29.	1.5	11
138	The Ca2+ release channel in junctional sarcoplasmic reticulum: Gating and blockade by cations. International Journal of Biochemistry & Cell Biology, 1992, 24, 903-909.	0.8	11
139	Correlation between the effect of the anti-neoplastic ether lipid 1-O-octadecyl-2-O-methyl-glycero-3-phosphocholine on the membrane and the activity of protein kinase Cî±. FEBS Journal, 2001, 268, 6369-6378.	0.2	11
140	ATP Enhances Neuronal Differentiation of PC12 Cells by Activating PKCα Interactions with Cytoskeletal Proteins. Journal of Proteome Research, 2011, 10, 529-540.	1.8	11
141	Curcumin modulates PKCα activity by a membrane-dependent effect. Archives of Biochemistry and Biophysics, 2011, 513, 36-41.	1.4	11
142	The membrane binding kinetics of full-length PKCα is determined by membrane lipid composition. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2012, 1821, 1434-1442.	1.2	11
143	A fourier transform infrared spectroscopic study of the molecular interaction of ubiquinone-10 and ubiquinol-10 with bilayers of dipalmitoylphosphatidylcholine. Biochimica Et Biophysica Acta - Biomembranes, 1986, 861, 25-32.	1.4	11
144	Oleuropein multicompartment nanovesicles enriched with collagen as a natural strategy for the treatment of skin wounds connected with oxidative stress. Nanomedicine, 2021, 16, 2363-2376.	1.7	11

#	Article	IF	Citations
145	A kinetic study of the interaction between mitochondrial F1 adenosine triphosphatase and adenylyl imidodiphosphate and guanylyl imidodiphosphate. Biochemical Journal, 1983, 210, 727-735.	1.7	10
146	A fluorescence and microcalorimetric study of the interaction between lasalocid A and phospholipid vesicles. Biochimica Et Biophysica Acta - Biomembranes, 1986, 860, 125-130.	1.4	10
147	Influence of retinoids on phosphatidylethanolamine lipid polymorphism. Biochimica Et Biophysica Acta - Biomembranes, 1992, 1112, 226-234.	1.4	10
148	Structural study of the catalytic domain of PKCzeta using infrared spectroscopy and two-dimensional infrared correlation spectroscopy. FEBS Journal, 2006, 273, 3273-3286.	2.2	10
149	The interaction of the Bax C-terminal domain with membranes is influenced by the presence of negatively charged phospholipids. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 1924-1932.	1.4	10
150	An ultrasensitive electrometric system to measure membrane-bound acetylcholinesterase activity. Analytical Biochemistry, 1983, 133, 302-306.	1.1	9
151	Drug Action of Ritodrine on the Sarcoplasmic-Reticulum Ca2+-ATPase from Skeletal Muscle. Archives of Biochemistry and Biophysics, 1995, 318, 97-104.	1.4	9
152	Activation of Protein Kinase C α by Lipid Mixtures Containing Different Proportions of Diacylglycerolsâ€. Biochemistry, 2001, 40, 15038-15046.	1.2	9
153	Alcohol dehydrogenase from the hyperthermophilic archaeon Pyrobaculum aerophilum: Stability at high temperature. Archives of Biochemistry and Biophysics, 2012, 525, 40-46.	1.4	9
154	Liposome-Encapsulated Morphine Affords a Prolonged Analgesia While Facilitating Extinction of Reward and Aversive Memories. Frontiers in Pharmacology, 2019, 10, 1082.	1.6	9
155	Effect of diacylglycerols on calcium-induced fusion of phosphatidylserine/phosphatidylcholine vesicles. Biochemical Society Transactions, 1989, 17, 957-960.	1.6	8
156	Factors contributing to the distribution of free fatty acids among phospholipid vesicles. Chemistry and Physics of Lipids, 1990, 55, 245-251.	1.5	8
157	On the effect of lysophosphatidylcholine, platelet activating factor and other surfactants on calcium permeability in sarcoplasmic reticulum vesicles. Chemistry and Physics of Lipids, 1991, 59, 1-7.	1.5	8
158	Modulation of polymorphic properties of dielaidoylphosphatidylethanolamine by the antineoplastic ether lipid 1-O-octadecyl-2-O-methyl-glycero-3-phosphocholine. Biochimica Et Biophysica Acta - Biomembranes, 1999, 1417, 202-210.	1.4	8
159	Limited carbodiimide derivatization modifies some functional properties of the sarcoplasmic reticulum calcium release channel. Biochemistry, 1993, 32, 8553-8559.	1.2	7
160	Location of N-cyclohexyl-N'-(4-dimethyl-amino-alpha-naphthyl)carbodiimide-binding site in sarcoplasmic reticulum Ca2+-transporting ATPase. FEBS Journal, 1998, 253, 339-344.	0.2	7
161	Attenuated total reflectance infrared spectroscopy: A powerful method for the simultaneous study of structure and spatial orientation of lipids and membrane proteins. Biomedical Spectroscopy and Imaging, 2015, 4, 159-170.	1.2	7
162	Interaction of Vitamin K ₁ and Vitamin K ₂ with Dimyristoylphosphatidylcholine and Their Location in the Membrane. Langmuir, 2020, 36, 1062-1073.	1.6	7

#	Article	IF	Citations
163	Effect of the calcium-channel blockers on calcium accumulation in sarcoplasmic reticulum of skeletal muscle. Biochimica Et Biophysica Acta - Biomembranes, 1987, 903, 473-479.	1.4	6
164	Study of soluble humic substances from newly prepared organic fertilizers. Science of the Total Environment, 1989, 81-82, 579-588.	3.9	6
165	A comparative study of the effect of the antineoplastic ether lipid 1-O-octadecyl-2-O-methyl-glycero-3-phosphocholine and some homologous compounds on PKC $\hat{l}\pm$ and PKC \hat{b} . Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2005, 1687, 110-119.	1.2	6
166	Structural information on probe solubilization in micelles by FTâ€"IR spectroscopy. Journal of Colloid and Interface Science, 1988, 124, 233-237.	5.0	5
167	Sublytic and lytic effects of the zwitterionic bile derivative 3-((3-Deoxycholamidopropyl)dimethylammonio)-1-propanesulfonate on phosphatidylcholine liposomes. Archives of Biochemistry and Biophysics, 1988, 262, 585-591.	1.4	5
168	The C1B domains of novel PKCε and PKCη have a higher membrane binding affinity than those of the also novel PKCδ and PKCθ. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 1898-1909.	1.4	5
169	Plan S for publishing science in an open access way: not everyone is likely to be happy. Biophysical Reviews, 2019, 11, 841-842.	1.5	5
170	The Interaction of Coenzyme Q and Vitamin E with Multibilayer Liposomes. Advances in Experimental Medicine and Biology, 1988, 238, 127-139.	0.8	5
171	Location and Dynamics of α-Tocopherol in Membranes. , 1991, , 98-117.		5
172	Phosphatidylinositol-4,5-Bisphosphate Enhances Anionic Lipid Demixing by the C2 Domain of PKCα. PLoS ONE, 2014, 9, e95973.	1.1	5
173	Effect of tetraphenylboron on the calcium-dependent ATPase activity of sarcoplasmic reticulum. Biochemical and Biophysical Research Communications, 1988, 151, 1093-1098.	1.0	4
174	Quinacrine inhibits the calcium-induced calcium release in heavy sacroplasmic reticulum vesicles. Biochimica Et Biophysica Acta - Biomembranes, 1989, 985, 279-285.	1.4	4
175	Effect of protease digestion on the secondary structure of sarcoplasmic reticulum Ca2+-ATPase as seen by FT-i.r. spectroscopy. International Journal of Biochemistry & Cell Biology, 1990, 22, 779-783.	0.8	4
176	A kinetic study of an unstable enzyme measured through coupling reactions. Application to the self-inactivation of detergent-solubilized Ca2+-ATPase from sarcoplasmic reticulum. BBA - Proteins and Proteomics, 1993, 1203, 45-52.	2.1	4
177	Structural aspects of the Ca2+-ATPase from sarcoplasmic reticulum. Biochemical Society Transactions, 1994, 22, 826-829.	1.6	4
178	Acetylcholinesterase from sarcoplasmic reticulum of white muscle. International Journal of Biochemistry & Cell Biology, 1982, 14, 667-672.	0.8	3
179	Mechanistic origin of the kinetic cooperativity for the ATPase activity of sarcoplasmic reticulum. Journal of Bioenergetics and Biomembranes, 1987, 19, 383-396.	1.0	3
180	Chemical modification of Ca2+-ATPase from sarcoplasmic reticulum with phenylglyoxal. Biochemical Society Transactions, 1994, 22, 381S-381S.	1.6	3

#	Article	IF	Citations
181	Functional properties of a sarcoplasmic reticulum Ca2+-ATPase with an altered Ca2+-binding mechanism. Biochemical Journal, 1995, 309, 499-505.	1.7	3
182	Diethylstilbestrol Modifies the Structure of Model Membranes and Is Localized Close to the First Carbons of the Fatty Acyl Chains. Biomolecules, 2021, 11, 220.	1.8	3
183	Structural studies of mitochondrial coupling factor 1 using tyrosine fluorescence. International Journal of Biochemistry & Cell Biology, 1985, 17, 223-228.	0.8	2
184	Modulation of the kinetic characteristics of the sarcoplasmic reticulum ATPase by membrane fluidity. Journal of Bioenergetics and Biomembranes, 1986, 18, 113-122.	1.0	2
185	FT-IR study of the hydrogen bonding interaction between cholesterol and DPPC. Biochemical Society Transactions, 1992, 20, 122S-122S.	1.6	2
186	Interdependence of H+ and K+ fluxes during the Ca2+-pumping activity of sarcoplasmic reticulum vesicles. Journal of Bioenergetics and Biomembranes, 1994, 26, 127-136.	1.0	2
187	Chapter 5 Phase Behavior of Membranes Containing Bioactive Lipids. Current Topics in Membranes, 1997, 44, 193-235.	0.5	2
188	Labeling the Ca2+-ATPase of Skeletal Muscle Sarcoplasmic Reticulum with Maleimidylsalicylic Acid. Journal of Biological Chemistry, 2000, 275, 39103-39109.	1.6	2
189	Structural Characterization of the C2 Domains of Classical Isozymes of Protein Kinase C and Novel Protein Kinase Cε by using Infrared Spectroscopy. Spectroscopy, 2003, 17, 399-416.	0.8	2
190	Membraneâ€Surface Anchoring of Charged Diacylglycerolâ€Lactones Correlates with Biological Activities. ChemBioChem, 2010, 11, 2003-2009.	1.3	2
191	Membrane docking mode of the C2 domain of PKCÎμ: An infrared spectroscopy and FRET study. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 552-560.	1.4	2
192	Correlation between fluorescence and structure in the orange-emitting GFP-like protein, monomeric Kusabira Orange. Journal of Photochemistry and Photobiology B: Biology, 2014, 138, 223-229.	1.7	2
193	Greetings from IUPAB Secretary General. Biophysical Reviews, 2021, 13, 11-12.	1.5	2
194	The binding of different model membranes with PKC $\hat{l}\mu$ C2 domain is not dependent on membrane curvature but affects the sequence of events during unfolding. Archives of Biochemistry and Biophysics, 2021, 705, 108910.	1.4	2
195	PKCε controls the fusion of secretory vesicles in mast cells in a phosphatidic acid-dependent mode. International Journal of Biological Macromolecules, 2021, 185, 377-389.	3.6	2
196	Clotrimazole Fluidizes Phospholipid Membranes and Localizes at the Hydrophobic Part near the Polar Part of the Membrane. Biomolecules, 2021, 11, 1304.	1.8	2
197	Modification of beef heart F1-ATPase by 1-dimethylaminonaphthalene-5-sulphonyl chloride. Biochemical Society Transactions, 1982, 10, 537-538.	1.6	1
198	A fluorescence quenching study of tryptophan residues of calcium ATPase from sarcoplasmic reticulum. Biochemical Society Transactions, 1985, 13, 244-245.	1.6	1

#	Article	IF	CITATIONS
199	Characterization of the tetraphenylboron-induced calcium release from skeletal sarcoplasmic reticulum. FEBS Journal, 1989, 181, 513-518.	0.2	1
200	Involvement of an arginyl residue in the nucleotide-binding site of Ca2+-ATPase from sarcoplasmic reticulum as seen by reaction with phenylglyoxal. Biochemical Journal, 1996, 318, 179-185.	1.7	1
201	Characterization of Phenylmaleimide Inhibition of the Ca2+-ATPase from Skeletal-Muscle Sarcoplasmic Reticulum. Archives of Biochemistry and Biophysics, 1999, 372, 121-127.	1.4	1
202	Quartz crystal microbalance with dissipation monitoring and the real-time study of biological systems and macromolecules at interfaces. Biomedical Spectroscopy and Imaging, 2012, 1, 325-338.	1.2	1
203	The Interaction with Different Membranes of the C2 Domain of PKC-Epsilon. Biophysical Journal, 2020, 118, 243a.	0.2	1
204	Development of Poly(lactide-co-glicolide) Nanoparticles Incorporating Morphine Hydrochloride to Prolong its Circulation in Blood. Current Pharmaceutical Design, 2017, 23, 2015-2025.	0.9	1
205	Structural properties of sarcoplasmic reticulum Ca2+-ATPase as studied by intrinsic protein fluorescence. International Journal of Biochemistry & Cell Biology, 1987, 19, 873-878.	0.8	0
206	Influence of dietary lipids on microsomal membranes from chick breast muscle. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1988, 90, 767-771.	0.2	0
207	Inside Cover: Membrane-Surface Anchoring of Charged Diacylglycerol-Lactones Correlates with Biological Activities (ChemBioChem 14/2010). ChemBioChem, 2010, 11, 1926-1926.	1.3	0
208	Protein kinases C are versatile decoders of lipid signals. Chemistry and Physics of Lipids, 2010, 163, S9-S10.	1.5	0
209	Activation of PKCα by docosahexaenoic acid in breast cancer cells. Chemistry and Physics of Lipids, 2010, 163, S46.	1.5	0
210	The Interaction of Curcumin with Phospholipid Model Membranes. a Study using Differential Scanning Calorimetry, NMR, X-Ray Diffraction and Infrared Spectroscopy. Biophysical Journal, 2010, 98, 478a.	0.2	0
211	The Interaction of C1B Domains from Novel PKCs with Lipids. Biophysical Journal, 2012, 102, 302a.	0.2	0
212	X-ray diffraction and NMR data for the study of the location of idebenone and idebenol in model membranes. Data in Brief, 2016, 7, 981-989.	0.5	0