
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4948279/publications.pdf Version: 2024-02-01

LINDA L KINKEI

#	Article	lF	CITATIONS
1	Microbiome definition re-visited: old concepts and new challenges. Microbiome, 2020, 8, 103.	11.1	903
2	Soil microbes drive the classic plant diversity–productivity pattern. Ecology, 2011, 92, 296-303.	3.2	517
3	Disease Suppressive Soils: New Insights from the Soil Microbiome. Phytopathology, 2017, 107, 1284-1297.	2.2	379
4	MICROBIAL POPULATION DYNAMICS ON LEAVES. Annual Review of Phytopathology, 1997, 35, 327-347.	7.8	218
5	Plant community richness and microbial interactions structure bacterial communities in soil. Ecology, 2015, 96, 134-142.	3.2	196
6	A Coevolutionary Framework for Managing Disease-Suppressive Soils. Annual Review of Phytopathology, 2011, 49, 47-67.	7.8	191
7	Biological Control of Phytophthora Root Rots on Alfalfa and Soybean with Streptomyces. Biological Control, 2002, 23, 285-295.	3.0	177
8	Streptomyces competition and co-evolution in relation to plant disease suppression. Research in Microbiology, 2012, 163, 490-499.	2.1	177
9	Diffuse symbioses: roles of plant–plant, plant–microbe and microbe–microbe interactions in structuring the soil microbiome. Molecular Ecology, 2014, 23, 1571-1583.	3.9	143
10	Surprising niche for the plant pathogen Pseudomonas syringae. Infection, Genetics and Evolution, 2007, 7, 84-92.	2.3	119
11	Competition and antibiosis in the biological control of potato scab. Canadian Journal of Microbiology, 2001, 47, 332-340.	1.7	100
12	Sympatric inhibition and niche differentiation suggest alternative coevolutionary trajectories among <i>Streptomycetes</i> . ISME Journal, 2014, 8, 249-256.	9.8	100
13	Spatial Variation in Frequency and Intensity of Antibiotic Interactions among Streptomycetes from Prairie Soil. Applied and Environmental Microbiology, 2004, 70, 1051-1058.	3.1	95
14	Selection and characterization of strains of <i>Streptomyces</i> suppressive to the potato scab pathogen. Canadian Journal of Microbiology, 1996, 42, 487-502.	1.7	87
15	Green manures and crop sequences influence alfalfa root rot and pathogen inhibitory activity among soil-borne streptomycetes. Plant and Soil, 2005, 268, 271-283.	3.7	84
16	Resource Amendments Influence Density and Competitive Phenotypes of Streptomyces in Soil. Microbial Ecology, 2009, 57, 413-420.	2.8	83
17	Soil Fungal Communities Respond to Grassland Plant Community Richness and Soil Edaphics. Microbial Ecology, 2015, 70, 188-195.	2.8	81
18	Title is missing!. Plant and Soil, 2001, 235, 35-44.	3.7	78

#	Article	IF	CITATIONS
19	Food webs obscure the strength of plant diversity effects on primary productivity. Ecology Letters, 2017, 20, 505-512.	6.4	73
20	Expanding the Paradigms of Plant Pathogen Life History and Evolution of Parasitic Fitness beyond Agricultural Boundaries. PLoS Pathogens, 2009, 5, e1000693.	4.7	72
21	Effects of antibiotic-producing Streptomyces on nodulation and leaf spot in alfalfa. Applied Soil Ecology, 2003, 22, 55-66.	4.3	67
22	Plant Community Richness Mediates Inhibitory Interactions and Resource Competition between Streptomyces and Fusarium Populations in the Rhizosphere. Microbial Ecology, 2017, 74, 157-167.	2.8	63
23	Plant community effects on the diversity and pathogen suppressive activity of soil streptomycetes. Applied Soil Ecology, 2010, 46, 35-42.	4.3	62
24	Plant monocultures produce more antagonistic soil Streptomyces communities than high-diversity plant communities. Soil Biology and Biochemistry, 2013, 65, 304-312.	8.8	61
25	Fungi, leaves, and the theory of island biogeography. Microbial Ecology, 1987, 14, 277-290.	2.8	54
26	Management of soil microbial communities to enhance populations of Fusarium graminearum-antagonists in soil. Plant and Soil, 2008, 302, 53-69.	3.7	49
27	Effect of Pathogen Isolate, Potato Cultivar, and Antagonist Strain on Potato Scab Severity and Biological Control. Biocontrol Science and Technology, 2004, 14, 301-311.	1.3	47
28	Global biogeography of <i>Streptomyces</i> antibiotic inhibition, resistance, and resource use. FEMS Microbiology Ecology, 2014, 88, 386-397.	2.7	47
29	Fungal immigration dynamics and community development on apple leaves. Microbial Ecology, 1989, 18, 45-58.	2.8	46
30	Relationships of in Vitro Pathogen Inhibition and Soil Colonization to Potato Scab Biocontrol by Antagonistic Streptomyces spp. Biological Control, 2001, 20, 102-112.	3.0	45
31	Subinhibitory Antibiotic Concentrations Mediate Nutrient Use and Competition among Soil Streptomyces. PLoS ONE, 2013, 8, e81064.	2.5	44
32	Blocking primers reduce co-amplification of plant DNA when studying bacterial endophyte communities. Journal of Microbiological Methods, 2015, 117, 1-3.	1.6	43
33	Do tradeoffs structure antibiotic inhibition, resistance, and resource use among soil-borne Streptomyces?. BMC Evolutionary Biology, 2015, 15, 186.	3.2	41
34	Monitoring exposure of nestling songbirds to agricultural application of an organophosphorus insecticide using cholinesterase activity. Environmental Toxicology and Chemistry, 1996, 15, 544-552.	4.3	39
35	Effects of plant host species and plant community richness on streptomycete community structure. FEMS Microbiology Ecology, 2013, 83, 596-606.	2.7	39
36	Manipulating Wild and Tamed Phytobiomes: Challenges and Opportunities. Phytobiomes Journal, 2019, 3, 3-21.	2.7	38

#	Article	IF	CITATIONS
37	Effort versus Reward: Preparing Samples for Fungal Community Characterization in High-Throughput Sequencing Surveys of Soils. PLoS ONE, 2015, 10, e0127234.	2.5	36
38	Foodâ€web composition and plant diversity control foliar nutrient content and stoichiometry. Journal of Ecology, 2015, 103, 1432-1441.	4.0	36
39	The world within: Quantifying the determinants and outcomes of a host's microbiome. Basic and Applied Ecology, 2013, 14, 533-539.	2.7	35
40	Genetic and phenotypic traits of streptomycetes used to characterize antibiotic activities of field-collected microbes. Canadian Journal of Microbiology, 2004, 50, 79-89.	1.7	34
41	Influence of disease-suppressive strains of <i>Streptomyces</i> on the native <i>Streptomyces</i> community in soil as determined by the analysis of cellular fatty acids. Canadian Journal of Microbiology, 1996, 42, 27-37.	1.7	32
42	Evidence for interspecies communication and its potential role in pathogen suppression in a naturally occurring disease suppressive soil. Canadian Journal of Microbiology, 1997, 43, 985-990.	1.7	31
43	Resource Use of Soilborne Streptomyces Varies with Location, Phylogeny, and Nitrogen Amendment. Microbial Ecology, 2013, 66, 961-971.	2.8	31
44	Nutrient use preferences among soil Streptomyces suggest greater resource competition in monoculture than polyculture plant communities. Plant and Soil, 2016, 409, 329-343.	3.7	31
45	Broadening Participation in Scientific Conferences during the Era of Social Distancing. Trends in Microbiology, 2020, 28, 949-952.	7.7	31
46	Relationship Between Phyllosphere Population Sizes of Xanthomonas translucens pv. translucens and Bacterial Leaf Streak Severity on Wheat Seedlings. Phytopathology, 1999, 89, 131-135.	2.2	29
47	Leveraging ecological theory to guide natural product discovery. Journal of Industrial Microbiology and Biotechnology, 2016, 43, 115-128.	3.0	29
48	Microbiome Metadata Standards: Report of the National Microbiome Data Collaborative's Workshop and Follow-On Activities. MSystems, 2021, 6, .	3.8	28
49	Network structure of resource use and niche overlap within the endophytic microbiome. ISME Journal, 2022, 16, 435-446.	9.8	28
50	Cropping History Effects on Pathogen Suppressive and Signaling Dynamics in <i>Streptomyces</i> Communities. Phytobiomes Journal, 2018, 2, 14-23.	2.7	27
51	Nutrient overlap, genetic relatedness and spatial origin influence interaction-mediated shifts in inhibitory phenotype among <i>Streptomyces</i> spp FEMS Microbiology Ecology, 2014, 90, 264-275.	2.7	26
52	Carbon Amendments Induce Shifts in Nutrient Use, Inhibitory, and Resistance Phenotypes Among Soilborne Streptomyces. Frontiers in Microbiology, 2019, 10, 498.	3.5	24
53	Invasion and Exclusion among Coexisting <i>Pseudomonas syringae</i> Strains on Leaves. Applied and Environmental Microbiology, 1993, 59, 3447-3454.	3.1	24
54	Interactions between Xanthomonas translucens pv. translucens, the Causal Agent of Bacterial Leaf Streak of Wheat, and Bacterial Epiphytes in the Wheat Phyllosphere. Biological Control, 2000, 17, 61-72.	3.0	23

#	Article	IF	CITATIONS
55	Effects of nutrient supply, herbivory, and host community on fungal endophyte diversity. Ecology, 2019, 100, e02758.	3.2	22
56	Plant diversity and plant identity influence <i>Fusarium</i> communities in soil. Mycologia, 2017, 109, 128-139.	1.9	21
57	Community-Driven Metadata Standards for Agricultural Microbiome Research. Phytobiomes Journal, 2020, 4, 115-121.	2.7	21
58	Stability of grassland production is robust to changes in the consumer food web. Ecology Letters, 2019, 22, 707-716.	6.4	20
59	Frontiers for research on the ecology of plantâ€pathogenic bacteria: fundamentals for sustainability. Molecular Plant Pathology, 2017, 18, 308-319.	4.2	18
60	DNA Template Dilution Impacts Amplicon Sequencing-Based Estimates of Soil Fungal Diversity. Phytobiomes Journal, 2018, 2, 100-107.	2.7	17
61	Microbial introductions to apple leaves: Influences of altered immigration on fungal community dynamics. Microbial Ecology, 1989, 18, 161-173.	2.8	16
62	Spatial Distribution of Aphanomyces cochlioides and Root Rot in Sugar Beet Fields. Plant Disease, 2002, 86, 547-551.	1.4	16
63	Production of quorum-sensing-related signal molecules by epiphytic bacteria inhabiting wheat heads. Canadian Journal of Microbiology, 2006, 52, 411-418.	1.7	16
64	Phylogeny, Plant Species, and Plant Diversity Influence Carbon Use Phenotypes Among <i>Fusarium</i> Populations in the Rhizosphere Microbiome. Phytobiomes Journal, 2017, 1, 150-157.	2.7	16
65	Inhibitory and nutrient use phenotypes among coexisting <i>Fusarium</i> and <i>Streptomyces</i> populations suggest local coevolutionary interactions in soil. Environmental Microbiology, 2020, 22, 976-985.	3.8	16
66	Lack of correspondence between genetic and phenotypic groups amongst soil-borne streptomycetes. FEMS Microbiology Ecology, 2007, 59, 564-575.	2.7	15
67	Siteâ€specific responses of foliar fungal microbiomes to nutrient addition and herbivory at different spatial scales. Ecology and Evolution, 2019, 9, 12231-12244.	1.9	15
68	Foliar fungi and plant diversity drive ecosystem carbon fluxes in experimental prairies. Ecology Letters, 2021, 24, 487-497.	6.4	15
69	Soil Streptomyces communities in a prairie establishment reflect interactions between soil edaphic characteristics and plant host. Plant and Soil, 2015, 386, 89-98.	3.7	13
70	Run-to-Run Sequencing Variation Can Introduce Taxon-Specific Bias in the Evaluation of Fungal Microbiomes. Phytobiomes Journal, 2018, 2, 165-170.	2.7	13
71	No evidence for tradeâ€offs in plant responses to consumer food web manipulations. Ecology, 2018, 99, 1953-1963.	3.2	13
72	Biological Control of Fusarium Crown and Root Rot of Wheat by <i>Streptomyces</i> Isolates – It's Complicated. Phytobiomes Journal, 2019, 3, 52-60.	2.7	13

#	Article	IF	CITATIONS
73	Impacts of cover crops and nitrogen fertilization on agricultural soil fungal and bacterial communities. Plant and Soil, 2021, 466, 139-150.	3.7	13
74	Molecular and functional characteristics of streptomycete communities in relation to soil factors and potato common scab. European Journal of Soil Biology, 2015, 70, 58-66.	3.2	11
75	Impacts of Sampling Design on Estimates of Microbial Community Diversity and Composition in Agricultural Soils. Microbial Ecology, 2019, 78, 753-763.	2.8	11
76	Microbial community analysis in incompletely or destructively sampled systems. Microbial Ecology, 1992, 24, 227-242.	2.8	10
77	Rapid and Specific Method for Evaluating <i>Streptomyces</i> Competitive Dynamics in Complex Soil Communities. Applied and Environmental Microbiology, 2010, 76, 2009-2012.	3.1	10
78	Soil conditioning affects interactions between native and invasive exotic perennials of semiâ€natural grasslands. Journal of Applied Ecology, 2017, 54, 1526-1533.	4.0	10
79	Plant diversity and litter accumulation mediate the loss of foliar endophyte fungal richness following nutrient addition. Ecology, 2021, 102, e03210.	3.2	10
80	Effect of wheel traffic and green manure treatments on forage yield and crown rot in alfalfa (Medicago sativa). Plant and Soil, 2013, 372, 349-359.	3.7	8
81	Seasonal shifts from plant diversity to consumer control of grassland productivity. Ecology Letters, 2022, 25, 1215-1224.	6.4	8
82	Towards a unified data infrastructure to support European and global microbiome research: a call to action. Environmental Microbiology, 2021, 23, 372-375.	3.8	7
83	Antibiotics: Conflict and Communication in Microbial Communities. Microbe Magazine, 2014, 9, 282-288.	0.4	7
84	Defining Linkages between the GSC and NSF's LTER Program: How the Ecological Metadata Language (EML) Relates to GCDML and Other Outcomes. OMICS A Journal of Integrative Biology, 2008, 12, 151-156.	2.0	6
85	Landscapeâ€scale Variation in Pathogenâ€suppressive Bacteria in Tropical Dry Forest Soils of Costa Rica. Biotropica, 2014, 46, 657-666.	1.6	6
86	Inhibitory interaction networks among coevolved Streptomyces populations from prairie soils. PLoS ONE, 2019, 14, e0223779.	2.5	6
87	Soil conditioning effects of native and exotic grassland perennials on the establishment of native and exotic plants. Plant and Soil, 2015, 393, 335-349.	3.7	5
88	Carbon Amendments Influence Composition and Functional Capacities of Indigenous Soil Microbiomes. Frontiers in Molecular Biosciences, 2019, 6, 151.	3.5	5
89	Potato Nitrogen Response and Soil Microbial Activity as Affected by Fumigation. American Journal of Potato Research, 2021, 98, 285-303.	0.9	5
90	Tree species effects on pathogen-suppressive capacities of soil bacteria across two tropical dry forests in Costa Rica. Oecologia, 2016, 182, 789-802.	2.0	3

#	Article	IF	CITATIONS
91	Genome Sequences for <i>Streptomyces</i> spp. Isolated from Disease-Suppressive Soils and Long-Term Ecological Research Sites. Genome Announcements, 2017, 5, .	0.8	3
92	Welcome to Phytobiomes. Phytobiomes Journal, 2017, 1, 3-4.	2.7	3
93	A Year of Phytobiomes. Phytobiomes Journal, 2018, 2, 53-54.	2.7	2
94	Long-term nitrogen addition in maize monocultures reduces <i>in vitro</i> inhibition of actinomycete standards by soil-borne actinomycetes. FEMS Microbiology Ecology, 2020, 96, .	2.7	2