
Yunsang Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4947571/publications.pdf Version: 2024-02-01

YUNSANG KIM

#	Article	IF	CITATIONS
1	Microencapsulated phase change material via Pickering emulsion stabilized by cellulose nanofibrils for thermal energy storage. Carbohydrate Polymers, 2022, 276, 118745.	10.2	14
2	Carboxymethyl Cellulose Enhanced Production of Cellulose Nanofibrils. Fibers, 2021, 9, 57.	4.0	7
3	Shape-Stabilized Phase Change Material by a Synthetic/Natural Hybrid Composite Foam with Cell-Wall Pores. ACS Applied Energy Materials, 2021, 4, 416-424.	5.1	11
4	Enhanced energy density and extraction efficiency of polar sol–gel dielectric films with reduced residual ions. Journal of Materials Chemistry C, 2020, 8, 17395-17402.	5.5	2
5	Bio-based Preservative using Methyl-β-cyclodextrin-Essential Oil Complexes for Wood Protection. International Journal of Biological Macromolecules, 2020, 147, 420-427.	7.5	28
6	β-Cyclodextrin-allyl isothiocyanate complex as a natural preservative for strand-based wood composites. Composites Part B: Engineering, 2020, 193, 108037.	12.0	10
7	Rigid polyurethane foams containing lignin oxyalkylated with ethylene carbonate and polyethylene glycol. Industrial Crops and Products, 2019, 141, 111797.	5.2	53
8	Lab-scale structural insulated panels with lignin-incorporated rigid polyurethane foams as core. Industrial Crops and Products, 2019, 132, 292-300.	5.2	34
9	β-Cyclodextrins as sustained-release carriers for natural wood preservatives. Industrial Crops and Products, 2019, 130, 42-48.	5.2	21
10	Effects of Surface Functionalization of Lignin on Synthesis and Properties of Rigid Bio-Based Polyurethanes Foams. Polymers, 2018, 10, 706.	4.5	57
11	High-energy-density hybrid sol–gel dielectric film capacitors with a polymeric charge blocking layer. Journal of Materials Chemistry A, 2017, 5, 25522-25528.	10.3	7
12	Environmentally sound textile dyeing technology with nanofibrillated cellulose. Green Chemistry, 2017, 19, 4031-4035.	9.0	46
13	Energy Storage: Bilayer Structure with Ultrahigh Energy/Power Density Using Hybrid Sol–Gel Dielectric and Chargeâ€Blocking Monolayer (Adv. Energy Mater. 19/2015). Advanced Energy Materials, 2015, 5, .	19.5	1
14	Bilayer Structure with Ultrahigh Energy/Power Density Using Hybrid Sol–Gel Dielectric and Chargeâ€Blocking Monolayer. Advanced Energy Materials, 2015, 5, 1500767.	19.5	33
15	Surface-Initiated Polymerization from Barium Titanate Nanoparticles for Hybrid Dielectric Capacitors. ACS Applied Materials & Interfaces, 2014, 6, 3477-3482.	8.0	138
16	Enhancement of breakdown strength and energy density in BaTiO ₃ /ferroelectric polymer nanocomposites via processing-induced matrix crystallinity and uniformity. RSC Advances, 2014, 4, 19668-19673.	3.6	20
17	Enhanced Permittivity and Energy Density in Neat Poly(vinylidene) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 Morphology. ACS Applied Materials & amp; Interfaces, 2014, 6, 9584-9589.	0 107 Td (f 8.0	luoride-triflu 43
18	Indium tin oxide modified by titanium dioxide nanoparticles dispersed in poly(N-vinylpyrrolidone) for use as an electron-collecting layer in organic solar cells with an inverted structure. Journal of Materials Research, 2013, 28, 535-540.	2.6	4

#	Article	IF	CITATIONS
19	High-Energy-Density Sol–Gel Thin Film Based on Neat 2-Cyanoethyltrimethoxysilane. ACS Applied Materials & Interfaces, 2013, 5, 1544-1547.	8.0	15