
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4947392/publications.pdf Version: 2024-02-01

YONG DING

#	Article	lF	CITATIONS
1	Crystal facet engineering of BiVO4/CQDs/TPP with improved charge transfer efficiency for photocatalytic water oxidation. Chemical Engineering Journal, 2022, 430, 132872.	12.7	30
2	Viologen-based covalent triazine frameworks for NO2 sensing at room temperature. Sensors and Actuators B: Chemical, 2022, 352, 131045.	7.8	7
3	Coupling NiCo catalysts with carbon quantum dots on hematite photoanodes for highly efficient oxygen evolution. Journal of Materials Chemistry A, 2022, 10, 2813-2818.	10.3	17
4	Metal–Organic Cages with {SiW ₉ Ni ₄ } Polyoxotungstate Nodes. Angewandte Chemie - International Edition, 2022, 61, .	13.8	22
5	Light-Driven CO ₂ Reduction over Prussian Blue Analogues as Heterogeneous Catalysts. ACS Catalysis, 2022, 12, 89-100.	11.2	47
6	Efficient water splitting over a hybrid photocatalyst with (002) active facets and heterostructure. Chemical Communications, 2022, 58, 8129-8132.	4.1	4
7	A homogeneous Cu-based polyoxometalate coupled with mesoporous TiO2 for efficient photocatalytic H2 production. Journal of Colloid and Interface Science, 2021, 587, 613-621.	9.4	24
8	Si-doped graphene nanosheets for NOx gas sensing. Sensors and Actuators B: Chemical, 2021, 328, 129005.	7.8	42
9	Visible-light driven ZnIn2S4/TiO2-x heterostructure for boosting photocatalytic H2 evolution. International Journal of Hydrogen Energy, 2021, 46, 6262-6271.	7.1	53
10	Defective acidic 2D COF-based catalysts for boosting the performance of polyoxymethylene diethyl ether synthesis under mild conditions. Dalton Transactions, 2021, 50, 5139-5145.	3.3	2
11	Electrochemical Trimming of Graphene Oxide Affords Graphene Quantum Dots for Fe ³⁺ Detection. ACS Applied Nano Materials, 2021, 4, 5220-5229.	5.0	13
12	Integrating Mo2Bx (xÂ=Â1, 4) with CdS for efficient photocatalytic hydrogen production. Chemical Engineering Journal, 2021, 410, 128339.	12.7	29
13	Si-doped graphene nanosheets as a metal-free catalyst for electrochemical detection of nitroaromatic explosives. Journal of Colloid and Interface Science, 2021, 594, 848-856.	9.4	11
14	Morphology Engineering of BiVO ₄ with CoO _x Derived from Cobaltâ€containing Polyoxometalate as Coâ€catalyst for Oxygen Evolution. Chemistry - an Asian Journal, 2021, 16, 2967-2972.	3.3	8
15	Covalent immobilization of molecular complexes on metal-organic frameworks towards robust and highly efficient heterogeneous water oxidation catalysts. Applied Catalysis B: Environmental, 2021, 291, 120070.	20.2	22
16	Carbon quantum dots enriching molecular nickel polyoxometalate over CdS semiconductor for photocatalytic water splitting. Applied Catalysis B: Environmental, 2021, 293, 120214.	20.2	112
17	Structural evolution of imine-linked covalent organic frameworks and their NH ₃ sensing performance. Journal of Materials Chemistry C, 2021, 9, 8562-8569.	5.5	31
18	Enhancing the macroscopic polarization of CdS for piezo-photocatalytic water splitting. Nano Energy, 2021, 90, 106635.	16.0	77

#	Article	IF	CITATIONS
19	Carbon Quantum Dot Conjugated Copper(II) Phthalocyanine Integrating BiVO ₄ Semiconductor for Photocatalytic Water Oxidation. Journal of Physical Chemistry C, 2021, 125, 24413-24421.	3.1	11
20	Rationally designed/assembled hybrid BiVO4-based photoanode for enhanced photoelectrochemical performance. Applied Catalysis B: Environmental, 2020, 260, 118136.	20.2	69
21	Cubic Co-Co prussian blue MOF-based transition metal phosphide as an efficient catalyst for visible light-driven water oxidation. Journal of Catalysis, 2020, 382, 13-21.	6.2	25
22	Study two kind different catalytic behaviors for K4H1.2[Co0.6(H2O)0.6SiW11.4O39.4]-cocatalyzed visible light driven water oxidation in pH 1–7 media. Journal of Catalysis, 2020, 392, 29-38.	6.2	4
23	Amorphous CoO coupled carbon dots as a spongy porous bifunctional catalyst for efficient photocatalytic water oxidation and CO2 reduction. Chinese Journal of Catalysis, 2020, 41, 1826-1836.	14.0	76
24	Covalent triazine-based frameworks for NH3 gas sensing at room temperature. Sensors and Actuators B: Chemical, 2020, 321, 128513.	7.8	20
25	Immobilization of Metal–Organic Framework MIL-100(Fe) on the Surface of BiVO ₄ : A New Platform for Enhanced Visible-Light-Driven Water Oxidation. ACS Applied Materials & Interfaces, 2020, 12, 10410-10419.	8.0	42
26	Carbon quantum dots assisted strategy to synthesize Co@NC for boosting photocatalytic hydrogen evolution performance of CdS. Chemical Engineering Journal, 2020, 389, 124432.	12.7	108
27	A graphene oxide–molecular Cu porphyrin-integrated BiVO ₄ photoanode for improved photoelectrochemical water oxidation performance. Journal of Materials Chemistry A, 2020, 8, 4062-4072.	10.3	66
28	Visible-light-driven hydrogen evolution using a polyoxometalate-based copper molecular catalyst. Dalton Transactions, 2020, 49, 3457-3462.	3.3	18
29	Enhanced Photoelectrochemical Performance of WO ₃ â€Based Composite Photoanode Coupled with Carbon Quantum Dots and NiFe Layered Double Hydroxide. ChemSusChem, 2019, 12, 4685-4692.	6.8	27
30	Recent Progress in Visible Light Driven Water Oxidation Using Semiconductors Coupled with Molecular Catalysts. ChemCatChem, 2019, 11, 6190-6202.	3.7	28
31	Enhanced photoelectrochemical water oxidation activity of BiVO4 by coating of Co-phenolic networks as hole-transfer and co-catalyst. Journal of Catalysis, 2019, 377, 684-691.	6.2	43
32	Synthesis of a 6-nm-Long Transition-Metal–Rare-Earth-Containing Polyoxometalate. Inorganic Chemistry, 2019, 58, 12534-12537.	4.0	38
33	A stable iron-containing polyoxometalate coupled with semiconductor for efficient photocatalytic water oxidation under acidic condition. Chemical Communications, 2019, 55, 11778-11781.	4.1	23
34	Enhanced photocatalytic activity of BiVO4 coupled with iron-based complexes for water oxidation under visible light irradiation. Chemical Communications, 2019, 55, 2529-2532.	4.1	18
35	Amorphous Ni–Fe double hydroxide hollow nanocubes enriched with oxygen vacancies as efficient electrocatalytic water oxidation catalysts. Chemical Communications, 2019, 55, 1044-1047.	4.1	102
36	FeO _{<i>x</i>} Derived from an Iron-Containing Polyoxometalate Boosting the Photocatalytic Water Oxidation Activity of Ti ³⁺ -Doped TiO ₂ . ACS Applied Materials & Interfaces, 2019, 11, 23135-23143.	8.0	20

#	Article	IF	CITATIONS
37	A novel dicobalt-substituted tungstoantimonate polyoxometalate: Synthesis, characterization, and photocatalytic water oxidation properties. Chinese Journal of Catalysis, 2019, 40, 953-958.	14.0	25
38	Ultrathin CoO _x nanolayers derived from polyoxometalate for enhanced photoelectrochemical performance of hematite photoanodes. Journal of Materials Chemistry A, 2019, 7, 6294-6303.	10.3	61
39	Insight into a hexanuclear cobalt complex: Strategy to construct efficient catalysts for visible light-driven water oxidation. Applied Catalysis B: Environmental, 2019, 241, 351-358.	20.2	28
40	Co Nanoparticles Decorated with Nitrogen Doped Carbon Nanotubes for Boosting Photocatalytic Water Splitting. ACS Sustainable Chemistry and Engineering, 2019, 7, 1753-1759.	6.7	38
41	Efficient visible light-driven water oxidation catalysts based on B-β-{BiW ₈ O ₃₀ } and unique 14-nuclear hetero-metal sandwich unit. Chemical Communications, 2018, 54, 674-677.	4.1	13
42	Ultrathin FeOOH Nanolayers with Abundant Oxygen Vacancies on BiVO ₄ Photoanodes for Efficient Water Oxidation. Angewandte Chemie - International Edition, 2018, 57, 2248-2252.	13.8	558
43	Ultrathin FeOOH Nanolayers with Abundant Oxygen Vacancies on BiVO ₄ Photoanodes for Efficient Water Oxidation. Angewandte Chemie, 2018, 130, 2270-2274.	2.0	57
44	Rationally designed/constructed MnOx/WO3 anode for photoelectrochemical water oxidation. Chinese Chemical Letters, 2018, 29, 811-814.	9.0	19
45	Boosting photocatalytic water oxidation achieved by BiVO4 coupled with iron-containing polyoxometalate: Analysis the true catalyst. Journal of Catalysis, 2018, 363, 109-116.	6.2	67
46	Water oxidation catalytic ability of polypyridine complex containing a μ-OH, μ-O2 dicobalt(iii) core. Chinese Journal of Catalysis, 2018, 39, 463-471.	14.0	35
47	Homogeneous electrocatalytic water oxidation at neutral pH by a robust trinuclear copper(<scp>ii</scp>)-substituted polyoxometalate. Chemical Communications, 2018, 54, 354-357.	4.1	52
48	Binuclear polyoxometalates based on abundant metals as efficient homogeneous photocatalytic water oxidation catalysts. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 355, 371-376.	3.9	8
49	An octanuclear Cu(<scp>ii</scp>) cluster with a bio-inspired Cu ₄ O ₄ cubic fragment for efficient photocatalytic water oxidation. Chemical Communications, 2018, 54, 12515-12518.	4.1	36
50	Facet effect of Co3O4 nanocrystals on visible-light driven water oxidation. Applied Catalysis B: Environmental, 2018, 237, 74-84.	20.2	88
51	P vacancies-enriched 3D hierarchical reduced cobalt phosphide as a precursor template for defect engineering for efficient water oxidation. Journal of Materials Chemistry A, 2018, 6, 14939-14948.	10.3	125
52	Catalysts Based on Earthâ€Abundant Metals for Visible Lightâ€Driven Water Oxidation Reaction. Chemical Record, 2018, 18, 1531-1547.	5.8	16
53	Homogeneous and heterogeneous photocatalytic water oxidation by polyoxometalates containing the most earth-abundant transition metal, iron. Applied Catalysis B: Environmental, 2018, 237, 1091-1100.	20.2	47
54	Recent advances in the field of light-driven water oxidation catalyzed by transition-metal substituted polyoxometalates. Dalton Transactions, 2018, 47, 8180-8188.	3.3	56

#	Article	IF	CITATIONS
55	Study of the Active Sites in Porous Nickel Oxide Nanosheets by Manganese Modulation for Enhanced Oxygen Evolution Catalysis. ACS Energy Letters, 2018, 3, 2150-2158.	17.4	131
56	Rationally Designed/Constructed CoO _{<i>x</i>} /WO ₃ Anode for Efficient Photoelectrochemical Water Oxidation. ACS Catalysis, 2017, 7, 1841-1845.	11.2	141
57	Polyoxometalate-based manganese clusters as catalysts for efficient photocatalytic and electrochemical water oxidation. Applied Catalysis B: Environmental, 2017, 209, 45-52.	20.2	62
58	In Situ Grown Pristine Cobalt Sulfide as Bifunctional Photocatalyst for Hydrogen and Oxygen Evolution. Advanced Functional Materials, 2017, 27, 1605846.	14.9	145
59	Iron–cobalt bimetal oxide nanorods as efficient and robust water oxidation catalysts. Dalton Transactions, 2017, 46, 10602-10610.	3.3	22
60	The mechanism change by switching the reactants from water to hydroxyl ions for electrocatalytic water oxidation: a case study of copper oxide microspheres. Dalton Transactions, 2017, 46, 7327-7331.	3.3	40
61	Design and synthesis of Cu modified cobalt oxides with hollow polyhedral nanocages as efficient electrocatalytic and photocatalytic water oxidation catalysts. Journal of Catalysis, 2017, 352, 246-255.	6.2	66
62	Efficient Co@CoO core-shell nanocrystals as catalysts for visible-light-driven water oxidation. Applied Catalysis B: Environmental, 2017, 210, 67-76.	20.2	27
63	Efficient hydrogen production from MIL-53(Fe) catalyst-modified Mo:BiVO ₄ photoelectrodes. Catalysis Science and Technology, 2017, 7, 4971-4976.	4.1	41
64	Identification of homogeneous [Co4(H2O)4(HPMIDA)2(PMIDA)2]6â^' as an effective molecular-light-driven water oxidation catalyst. Applied Catalysis B: Environmental, 2017, 202, 397-403.	20.2	19
65	[{β-SiNi ₂ W ₁₀ O ₃₆ (OH) ₂ (H ₂ O)} ₄ a new robust visible light-driven water oxidation catalyst based on nickel-containing polyoxometalate. Chemical Communications, 2016, 52, 14494-14497.	^{24 4.1}	â^': 42
66	Porous Co 3 O 4 /CuO hollow polyhedral nanocages derived from metal-organic frameworks with heterojunctions as efficient photocatalytic water oxidation catalysts. Applied Catalysis B: Environmental, 2016, 198, 447-456.	20.2	153
67	Mn-doping and NiFe layered double hydroxide coating: Effective approaches to enhancing the performance of α-Fe2O3 in photoelectrochemical water oxidation. Journal of Catalysis, 2016, 340, 261-269.	6.2	107
68	Solvation effect promoted formation of p–n junction between WO3 and FeOOH: A high performance photoanode for water oxidation. Journal of Catalysis, 2016, 333, 200-206.	6.2	86
69	Flowerâ~'like 3D CuO microsphere acting as photocatalytic water oxidation catalyst. Chinese Journal of Catalysis, 2016, 37, 123-134.	14.0	69
70	Efficient Photochemical, Thermal, and Electrochemical Water Oxidation Catalyzed by a Porous Iron-Based Oxide Derived Metal–Organic Framework. Journal of Physical Chemistry C, 2016, 120, 517-526.	3.1	29
71	Morphologyâ€Controlled Selfâ€Assembly and Nanostructured NiO: An Efficient and Robust Photocatalytic Waterâ€Oxidation Catalyst. ChemCatChem, 2015, 7, 2370-2376.	3.7	16
72	A Bioinspired Molecular Polyoxometalate Catalyst with Two Cobalt(II) Oxide Cores for Photocatalytic Water Oxidation. ChemSusChem, 2015, 8, 2630-2634.	6.8	78

#	Article	IF	CITATIONS
73	Efficient photocatalytic water oxidation catalyzed by polyoxometalate [Fe ₁₁ (H ₂ O) ₁₄ (OH) ₂ (W ₃ O ₁₀) <su based on abundant metals. Chemical Communications, 2015, 51, 13925-13928.</su 	b 42 <td>>(∮₽-SbW∢s</td>	> (∮ ₽-SbW∢s
74	Ferromagnetic nanocrystallines containing copper as an efficient catalyst for photoinduced water oxidation. Physical Chemistry Chemical Physics, 2015, 17, 10648-10655.	2.8	20
75	Efficient light-driven water oxidation catalyzed by a mononuclear cobalt(<scp>iii</scp>) complex. Chemical Communications, 2015, 51, 17309-17312.	4.1	41
76	Efficient visible light-driven water oxidation catalyzed by an all-inorganic copper-containing polyoxometalate. Chemical Communications, 2015, 51, 17443-17446.	4.1	60
77	Efficient photocatalytic H2 evolution catalyzed by an unprecedented robust molecular semiconductor {Fe11} nanocluster without cocatalysts at neutral conditions. Nano Energy, 2015, 16, 247-255.	16.0	94
78	M _x Co _{3â^'x} O ₄ (M = Co, Mn, Fe) porous nanocages derived from metal–organic frameworks as efficient water oxidation catalysts. Journal of Materials Chemistry A, 2015, 3, 22300-22310.	10.3	65
79	Hexagonal assembly of Co ₃ V ₂ O ₈ nanoparticles acting as an efficient catalyst for visible light-driven water oxidation. Journal of Materials Chemistry A, 2014, 2, 19308-19314.	10.3	58
80	A mononuclear cobalt complex with an organic ligand acting as a precatalyst for efficient visible light-driven water oxidation. Chemical Communications, 2014, 50, 2167-2169.	4.1	71
81	Visibleâ€Lightâ€Induced Water Oxidation Mediated by a Mononuclearâ€Cobalt(II)â€Substituted Silicotungstate. Chemistry - an Asian Journal, 2014, 9, 3228-3237.	3.3	33
82	MnO ₂ spontaneously coated on carbon nanotubes for enhanced water oxidation. Chemical Communications, 2014, 50, 11938-11941.	4.1	31
83	A new halide-free efficient reaction-controlled phase-transfer catalyst based on silicotungstate of [(C ₁₈ H ₃₇) ₂ (CH ₃) ₂ N] ₃ for olefin epoxidation, oxidation of sulfides and alcohols with hydrogen peroxide. RSC Advances, 2014, 4, 32054-32062.	4 ₃ /sub>H	(WO ₅
84	An efficient oxygen evolving catalyst based on a \hat{l} 4-O diiron coordination complex. Chemical Communications, 2014, 50, 12779-12782.	4.1	58
85	Progress in Polyoxometalates-Catalyzed Water Oxidation. Acta Chimica Sinica, 2014, 72, 133.	1.4	13
86	A kinetic and spectroscopic study on the polyoxometalate species in a reaction-controlled phase transfer catalytic epoxidation system. Reaction Kinetics, Mechanisms and Catalysis, 2013, 109, 509-524.	1.7	5
87	The oxidation of pyridines catalyzed by surfactant-encapsulated polyoxometalate [(C18H37)2(CH3)2N]8[HBW11O39] with the temperature-responsive property of solubility. New Journal of Chemistry, 2013, 37, 2614.	2.8	15
88	K7[ColllColl(H2O)W11O39]: a molecular mixed-valence Keggin polyoxometalate catalyst of high stability and efficiency for visible light-driven water oxidation. Energy and Environmental Science, 2013, 6, 1170.	30.8	285
89	Oxidation of Alcohols and Pyridines by a Water-Soluble Polyoxometalate with Hydrogen Peroxide. Synthetic Communications, 2013, 43, 1211-1218.	2.1	5
90	Sulfamic Acid as A Cost-Effective Catalyst for Synthesis of α -Acyloxyacrylate Esters as Candidate Monomers for Biobased Polymers by Acylation of Pyruvate Esters. Synthetic Communications, 2012, 42, 3053-3060.	2.1	7

#	Article	IF	CITATIONS
91	Lacunary Derivative [HPW ₉ O ₃₄] ^{8â^²} as Reusable and Active Catalyst for Alcohol Oxidation in Water. Synthetic Communications, 2012, 42, 554-562.	2.1	8
92	Efficient Light-Driven Carbon-Free Cobalt-Based Molecular Catalyst for Water Oxidation. Journal of the American Chemical Society, 2011, 133, 2068-2071.	13.7	336
93	Mild and recyclable catalytic oxidation of pyridines to N-oxides with H2O2 in water mediated by a vanadium-substituted polyoxometalate. Green Chemistry, 2011, 13, 1486.	9.0	52
94	An effective and recyclable catalytic system for alcohol oxidation in water based on a temperature-responsive catalyst. Reaction Kinetics, Mechanisms and Catalysis, 2011, 102, 85-92.	1.7	11
95	[(C18H37)2(CH3)2N]7[PW11O39]: a temperature-controlled phase transfer catalyst for olefin epoxidation. Reaction Kinetics, Mechanisms and Catalysis, 2011, 102, 93-102.	1.7	12
96	Immobilization of heteropolytungstate on functionalized KIT-1 mesoporous silica: catalyst for alkene epoxidation. Reaction Kinetics, Mechanisms and Catalysis, 2011, 102, 459-472.	1.7	6
97	[Ï€-C5H5N(CH2)15CH3]3[PW4O32]/H2O2/ethyl acetate/alkenes: a recyclable and environmentally benign alkenes epoxidation catalytic system. Green Chemistry, 2008, 10, 910.	9.0	94
98	Epoxidation of Alkenes by Hydrogen Peroxide over 12-Heteropolyacids of Molybdenum and Tungsten (H3PMo3W9O40) Combined with Cetylpyridinium Bromide. Journal of Chemical Research, 2006, 2006, 499-503.	1.3	7
99	Some New Features on Synthesis of Titanium Silicalite-1 in a Non-TPAOH Inorganic Reactant Synthetic System. Journal of Porous Materials, 2005, 12, 131-141.	2.6	14
100	One-Step Synthesis of Isoamyl Butyrate from Isoamyl Alcohol and n-Butyraldehyde over TS-1 in Air. Catalysis Letters, 2003, 87, 81-83.	2.6	4
101	Hydroxylation of phenol catalyzed by copper Keggin-type heteropoly compounds with hydrogen peroxide. New Journal of Chemistry, 2002, 26, 376-377.	2.8	34
102	Metal–Organic Cages with {SiW ₉ Ni ₄ } Polyoxotungstate Nodes. Angewandte Chemie, 0, , .	2.0	4