
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4947307/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Platelet Phagocytosis via Pâ€selectin Glycoprotein Ligand 1 and Accumulation of Microparticles in Systemic Sclerosis. Arthritis and Rheumatology, 2022, 74, 318-328.	2.9	12
2	CXCR4/CXCL12 Activities in the Tumor Microenvironment and Implications for Tumor Immunotherapy. Cancers, 2022, 14, 2314.	1.7	27
3	Soluble Receptor for Advanced Glycation End-products regulates age-associated Cardiac Fibrosis. International Journal of Biological Sciences, 2021, 17, 2399-2416.	2.6	14
4	CXCR4 engagement triggers CD47 internalization and antitumor immunization in a mouse model of mesothelioma. EMBO Molecular Medicine, 2021, 13, e12344.	3.3	11
5	Rebalancing expression of HMCB1 redox isoforms to counteract muscular dystrophy. Science Translational Medicine, 2021, 13, .	5.8	26
6	Redox modifications of cysteine residues regulate the cytokine activity of HMGB1. Molecular Medicine, 2021, 27, 58.	1.9	25
7	Pharmacological or genetic inhibition of iNOS prevents cachexiaâ€mediated muscle wasting and its associated metabolism defects. EMBO Molecular Medicine, 2021, 13, e13591.	3.3	9
8	HMGB1 promotes CXCL12â€dependent egress of murine B cells from Peyer's patches in homeostasis. European Journal of Immunology, 2021, 51, 1980-1991.	1.6	5
9	Immunogenic cell death and immunogenic surrender: related but distinct mechanisms of immune surveillance. Cell Death and Disease, 2021, 12, 869.	2.7	5
10	HMGB1 signaling phosphorylates Ku70 and impairs DNA damage repair in Alzheimer's disease pathology. Communications Biology, 2021, 4, 1175.	2.0	14
11	Histone acetylation landscape in S. cerevisiae nhp6ab mutants reflects altered glucose metabolism. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129454.	1.1	2
12	The Chemokine Receptor CXCR4 in Cell Proliferation and Tissue Regeneration. Frontiers in Immunology, 2020, 11, 2109.	2.2	142
13	β-Arrestin1 and β-Arrestin2 Are Required to Support the Activity of the CXCL12/HMGB1 Heterocomplex on CXCR4. Frontiers in Immunology, 2020, 11, 550824.	2.2	13
14	First Responders Shape a Prompt and Sharp NF-κB-Mediated Transcriptional Response to TNF-α. IScience, 2020, 23, 101529.	1.9	11
15	Nucleosomes effectively shield DNA from radiation damage in living cells. Nucleic Acids Research, 2020, 48, 8993-9006.	6.5	25
16	Discovery of 5,5′-Methylenedi-2,3-Cresotic Acid as a Potent Inhibitor of the Chemotactic Activity of the HMGB1A·CXCL12 Heterocomplex Using Virtual Screening and NMR Validation. Frontiers in Chemistry, 2020, 8, 598710.	1.8	3
17	Oxidation of HMGB1 Is a Dynamically Regulated Process in Physiological and Pathological Conditions. Frontiers in Immunology, 2020, 11, 1122.	2.2	23
18	Expression of Concern to: Redox modification of cysteine residues regulates the cytokine activity of high mobility group box-1 (HMGB1). Molecular Medicine, 2020, 26, 18.	1.9	3

#	Article	IF	CITATIONS
19	Diflunisal targets the <scp>HMGB</scp> 1/ <scp>CXCL</scp> 12 heterocomplex and blocks immune cell recruitment. EMBO Reports, 2019, 20, e47788.	2.0	34
20	Citrullination Licenses Calpain to Decondense Nuclei in Neutrophil Extracellular Trap Formation. Frontiers in Immunology, 2019, 10, 2481.	2.2	41
21	Exploiting Live Imaging to Track Nuclei During Myoblast Differentiation and Fusion. Journal of Visualized Experiments, 2019, , .	0.2	4
22	The IL-1/IL-1 receptor axis and tumor cell released inflammasome adaptor ASC are key regulators of TSLP secretion by cancer associated fibroblasts in pancreatic cancer. , 2019, 7, 45.		54
23	Stress and Alarmins. Report from the 9th iD&EAs meeting. Cell Death and Disease, 2019, 10, 937.	2.7	3
24	Loss of Endogenous HMGB2 Promotes Cardiac Dysfunction and Pressure Overload-Induced Heart Failure in Mice. Circulation Journal, 2019, 83, 368-378.	0.7	16
25	The Janus face of HMGB1 in heart disease: a necessary update. Cellular and Molecular Life Sciences, 2019, 76, 211-229.	2.4	99
26	Brain-released alarmins and stress response synergize in accelerating atherosclerosis progression after stroke. Science Translational Medicine, 2018, 10, .	5.8	54
27	High mobility group box 1 orchestrates tissue regeneration via CXCR4. Journal of Experimental Medicine, 2018, 215, 303-318.	4.2	131
28	Probing p53 Activation by Live-Cell Single-Molecule Chromatin Binding Measurements. Biophysical Journal, 2018, 114, 682a.	0.2	0
29	Pulsed Labelling of Endogenous p53 to Dissect the Role of its Oligomerization and Binding in Stress Responses. Biophysical Journal, 2018, 114, 169a-170a.	0.2	Ο
30	Redox-Mediated Mechanisms Fuel Monocyte Responses to CXCL12/HMGB1 in Active Rheumatoid Arthritis. Frontiers in Immunology, 2018, 9, 2118.	2.2	40
31	Platelet microparticles sustain autophagy-associated activation of neutrophils in systemic sclerosis. Science Translational Medicine, 2018, 10, .	5.8	118
32	LPS-Challenged Macrophages Release Microvesicles Coated With Histones. Frontiers in Immunology, 2018, 9, 1463.	2.2	47
33	miR-34a Promotes Vascular Smooth Muscle Cell Calcification by Downregulating SIRT1 (Sirtuin 1) and Axl (AXL Receptor Tyrosine Kinase). Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 2079-2090.	1.1	93
34	Exploring the biological functional mechanism of the HMGB1/TLR4/MD-2 complex by surface plasmon resonance. Molecular Medicine, 2018, 24, 21.	1.9	50
35	The shedding-derived soluble receptor for advanced glycation endproducts sustains inflammation during acute Pseudomonas aeruginosa lung infection. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 354-364.	1.1	24
36	HMGB1 is upregulated in the airways in asthma and potentiates airway smooth muscle contraction via TLR4. Journal of Allergy and Clinical Immunology, 2017, 140, 584-587.e8.	1.5	55

#	Article	IF	CITATIONS
37	Highâ€mobility group box 1 protein orchestrates responses to tissue damage via inflammation, innate and adaptive immunity, and tissue repair. Immunological Reviews, 2017, 280, 74-82.	2.8	281
38	Live-cell p53 single-molecule binding is modulated by C-terminal acetylation and correlates with transcriptional activity. Nature Communications, 2017, 8, 313.	5.8	104
39	Single-cell analyses reveal an attenuated NF- $\hat{I}^{e}B$ response in the Salmonella-infected fibroblast. Virulence, 2017, 8, 719-740.	1.8	15
40	Oxidative stress controls the choice of alternative last exons via a Brahma–BRCA1–CstF pathway. Nucleic Acids Research, 2017, 45, 902-914.	6.5	26
41	From Human Megakaryocytes to Platelets: Effects of Aspirin on High-Mobility Group Box 1/Receptor for Advanced Glycation End Products Axis. Frontiers in Immunology, 2017, 8, 1946.	2.2	18
42	HMGB1 targeting by ethyl pyruvate suppresses malignant phenotype of human mesothelioma. Oncotarget, 2017, 8, 22649-22661.	0.8	43
43	NF-κB oscillations translate into functionally related patterns of gene expression. ELife, 2016, 5, e09100.	2.8	123
44	HMGB1 as biomarker and drug target. Pharmacological Research, 2016, 111, 534-544.	3.1	214
45	Disulfide HMGB1 derived from platelets coordinates venous thrombosis in mice. Blood, 2016, 128, 2435-2449.	0.6	219
46	Human malignant mesothelioma is recapitulated in immunocompetent BALB/c mice injected with murine AB cells. Scientific Reports, 2016, 6, 22850.	1.6	36
47	Epithelial calcineurin controls microbiota-dependent intestinal tumor development. Nature Medicine, 2016, 22, 506-515.	15.2	93
48	Leukocytes recruited by tumor-derived HMGB1 sustain peritoneal carcinomatosis. Oncolmmunology, 2016, 5, e1122860.	2.1	20
49	The Mouse-Specific Splice Variant mRAGE_v4 Encodes a Membrane-Bound RAGE That Is Resistant to Shedding and Does Not Contribute to the Production of Soluble RAGE. PLoS ONE, 2016, 11, e0153832.	1.1	6
50	Interplay between stochasticity and negative feedback leads to pulsed dynamics and distinct gene activity patterns. Physical Review E, 2015, 92, 022711.	0.8	10
51	DAMPs from Cell Death to New Life. Frontiers in Immunology, 2015, 6, 422.	2.2	500
52	Aspirin's Active Metabolite Salicylic Acid Targets High Mobility Group Box 1 to Modulate Inflammatory Responses. Molecular Medicine, 2015, 21, 526-535.	1.9	97
53	Aspirin delays mesothelioma growth by inhibiting HMGB1-mediated tumor progression. Cell Death and Disease, 2015, 6, e1786-e1786.	2.7	61
54	5â€Fluorouracil causes leukocytes attraction in the peritoneal cavity by activating autophagy and HMGB1 release in colon carcinoma cells. International Journal of Cancer, 2015, 136, 1381-1389.	2.3	44

#	Article	IF	CITATIONS
55	The Receptor for Advanced Glycation End-Products (RAGE) Is Only Present in Mammals, and Belongs to a Family of Cell Adhesion Molecules (CAMs). PLoS ONE, 2014, 9, e86903.	1.1	115
56	High-Throughput Analysis of NF-κB Dynamics in Single Cells Reveals Basal Nuclear Localization of NF-κB and Spontaneous Activation of Oscillations. PLoS ONE, 2014, 9, e90104.	1.1	33
57	Nucleosome loss facilitates the chemotactic response of macrophages. Journal of Internal Medicine, 2014, 276, 454-469.	2.7	24
58	Histone content increases in differentiating embryonic stem cells. Frontiers in Physiology, 2014, 5, 330.	1.3	11
59	Killing cancer cells, twice with one shot. Cell Death and Differentiation, 2014, 21, 1-2.	5.0	22
60	How macrophages ring the inflammation alarm. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2866-2867.	3.3	38
61	A simple model of <mmi:math si0030.gif<br="" xmins:mmi="http://www.w3.org/1998/Math/MathML_altimg=">overflow="scroll"><mmi:mi>NF</mmi:mi><mmi:mi mathvariant="normal">-<mmi:mi> ^mmi:mi><mmi:mi mathvariant="normal">-</mmi:mi </mmi:mi> ^mmi:mi> <mmi:mi overflow="scroll">- <mmi:mi> mathvariant="normal">-</mmi:mi> <mmi:mi> <mmi:mi> mathvariant="normal">-</mmi:mi> </mmi:mi> <td>0.8</td><td>21</td></mmi:mi </mmi:mi </mmi:math>	0.8	21
62	Journal of Theoretical Biology, 2014, 347, 44-55. Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma. Nature, 2014, 507, 109-113.	13.7	547
63	Leukocyte HMGB1 Is Required for Vessel Remodeling in Regenerating Muscles. Journal of Immunology, 2014, 192, 5257-5264.	0.4	39
64	Disulfide-Containing High Mobility Group Box-1 Promotes <i>N</i> -Methyl- <scp>d</scp> -Aspartate Receptor Function and Excitotoxicity by Activating Toll-Like Receptor 4-Dependent Signaling in Hippocampal Neurons. Antioxidants and Redox Signaling, 2014, 21, 1726-1740.	2.5	141
65	Oxidative Stress Elicits Platelet/Leukocyte Inflammatory Interactions <i>via</i> HMGB1: A Candidate for Microvessel Injury in Sytemic Sclerosis. Antioxidants and Redox Signaling, 2014, 20, 1060-1074.	2.5	81
66	Cancer cell–autonomous contribution of type I interferon signaling to the efficacy of chemotherapy. Nature Medicine, 2014, 20, 1301-1309.	15.2	823
67	Activated platelets present high mobility group box 1 to neutrophils, inducing autophagy and promoting the extrusion of neutrophil extracellular traps. Journal of Thrombosis and Haemostasis, 2014, 12, 2074-2088.	1.9	426
68	A Systematic Nomenclature for the Redox States of High Mobility Group Box (HMGB) Proteins. Molecular Medicine, 2014, 20, 135-137.	1.9	94
69	Receptor for Advanced Glycation Endproducts is upregulated in temporal lobe epilepsy and contributes to experimental seizures. Neurobiology of Disease, 2013, 58, 102-114.	2.1	139
70	HuR and miR-1192 regulate myogenesis by modulating the translation of HMGB1 mRNA. Nature Communications, 2013, 4, 2388.	5.8	69
71	HMGB1 and leukocyte migration during trauma and sterile inflammation. Molecular Immunology, 2013, 55, 76-82.	1.0	189
72	Redox Modification of Cysteine Residues Regulates the Cytokine Activity of High Mobility Group Box-1 (HMGB1). Molecular Medicine, 2012, 18, 250-259.	1.9	378

#	Article	IF	CITATIONS
73	Mutually exclusive redox forms of HMGB1 promote cell recruitment or proinflammatory cytokine release. Journal of Experimental Medicine, 2012, 209, 1519-1528.	4.2	590
74	Cancer Cell Secretion of the DAMP Protein HMGB1 Supports Progression in Malignant Mesothelioma. Cancer Research, 2012, 72, 3290-3301.	0.4	213
75	Damage Associated Molecular Pattern Molecule-Induced microRNAs (DAMPmiRs) in Human Peripheral Blood Mononuclear Cells. PLoS ONE, 2012, 7, e38899.	1.1	35
76	HMGB1 promotes recruitment of inflammatory cells to damaged tissues by forming a complex with CXCL12 and signaling via CXCR4. Journal of Experimental Medicine, 2012, 209, 551-563.	4.2	539
77	Mutually exclusive redox forms of HMGB1 promote cell recruitment or proinflammatory cytokine release. Journal of General Physiology, 2012, 140, i3-i3.	0.9	0
78	DNA-based strategies for blocking HMGB1 cytokine activity: design, synthesis and preliminary in vitro/in vivo assays of DNA and DNA-like duplexes. Molecular BioSystems, 2011, 7, 1742.	2.9	20
79	Interleukin-1 type 1 receptor/Toll-like receptor signalling in epilepsy: the importance of IL-1beta and high-mobility group box 1. Journal of Internal Medicine, 2011, 270, 319-326.	2.7	157
80	The adhesion molecule NCAM promotes ovarian cancer progression via FGFR signalling. EMBO Molecular Medicine, 2011, 3, 480-494.	3.3	67
81	Kupffer Cells Hasten Resolution of Liver Immunopathology in Mouse Models of Viral Hepatitis. PLoS Pathogens, 2011, 7, e1002061.	2.1	96
82	Substantial Histone Reduction Modulates Genomewide Nucleosomal Occupancy and Global Transcriptional Output. PLoS Biology, 2011, 9, e1001086.	2.6	193
83	HMGB1: the missing link between diabetes mellitus and heart failure. Basic Research in Cardiology, 2010, 105, 805-820.	2.5	105
84	Protective targeting of high mobility group box chromosomal protein 1 in a spontaneous arthritis model. Arthritis and Rheumatism, 2010, 62, 2963-2972.	6.7	49
85	TLR4-mediated skin carcinogenesis is dependent on immune and radioresistant cells. EMBO Journal, 2010, 29, 2242-2252.	3.5	148
86	Toll-like receptor 4 and high-mobility group box-1 are involved in ictogenesis and can be targeted to reduce seizures. Nature Medicine, 2010, 16, 413-419.	15.2	777
87	Redox remodeling: a candidate regulator of HMGB1 function in injured skeletal muscle. Annals of the New York Academy of Sciences, 2010, 1209, 83-90.	1.8	29
88	Inhibitor of NF-κB Kinases α and β Are Both Essential for High Mobility Group Box 1-Mediated Chemotaxis. Journal of Immunology, 2010, 184, 4497-4509.	0.4	90
89	Programmed necrosis induced by asbestos in human mesothelial cells causes high-mobility group box 1 protein release and resultant inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12611-12616.	3.3	234
90	Ancient News: HMGBs are Universal Sentinels. Journal of Molecular Cell Biology, 2010, 2, 116-117.	1.5	8

MARCO EMILIO BIANCHI

#	Article	IF	CITATIONS
91	Endogenous HMGB1 regulates autophagy. Journal of Cell Biology, 2010, 190, 881-892.	2.3	819
92	Endogenous HMGB1 regulates autophagy. Journal of Experimental Medicine, 2010, 207, i27-i27.	4.2	0
93	High mobility group B2 is secreted by myeloid cells and has mitogenic and chemoattractant activities similar to high mobility group B1. Autoimmunity, 2009, 42, 308-310.	1.2	42
94	Aging-related loss of the chromatin protein HMGB2 in articular cartilage is linked to reduced cellularity and osteoarthritis. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1181-1186.	3.3	124
95	Inflammatory and alternatively activated human macrophages attract vessel-associated stem cells, relying on separate HMGB1- and MMP-9-dependent pathways. Journal of Leukocyte Biology, 2009, 85, 779-787.	1.5	194
96	Src family kinases are necessary for cell migration induced by extracellular HMGB1. Journal of Leukocyte Biology, 2009, 86, 617-623.	1.5	51
97	Requirement of HMGB1 for stromal cell-derived factor-1/CXCL12-dependent migration of macrophages and dendritic cells. Journal of Leukocyte Biology, 2009, 86, 609-615.	1.5	100
98	Editorial: A recipe for inflammation. Journal of Leukocyte Biology, 2009, 86, 471-472.	1.5	5
99	Dangers In and Out. Science, 2009, 323, 1683-1684.	6.0	136
100	HMGB proteins function as universal sentinels for nucleic-acid-mediated innate immune responses. Nature, 2009, 462, 99-103.	13.7	602
101	HMCB1 loves company. Journal of Leukocyte Biology, 2009, 86, 573-576.	1.5	360
102	Extracellular high mobility group box-1 inhibits R5 and X4 HIV-1 strains replication in mononuclear phagocytes without induction of chemokines and cytokines. Aids, 2009, 23, 567-577.	1.0	22
103	Several Nuclear Events during Apoptosis Depend on Caspase-3 Activation but Do Not Constitute a Common Pathway. PLoS ONE, 2009, 4, e6234.	1.1	16
104	Sustained Oscillations of NF-κB Produce Distinct Genome Scanning and Gene Expression Profiles. PLoS ONE, 2009, 4, e7163.	1.1	104
105	Regulation of Dendritic- and T-Cell Fate by Injury-Associated Endogenous Signals. Critical Reviews in Immunology, 2009, 29, 69-86.	1.0	61
106	The binding domain of the HMGB1 inhibitor carbenoxolone: Theory and experiment. Chemical Physics Letters, 2008, 456, 236-242.	1.2	5
107	High-Mobility Group Box 1 Protein in Human and Murine Skin: Involvement in Wound Healing. Journal of Investigative Dermatology, 2008, 128, 1545-1553.	0.3	146
108	Induction of inflammatory and immune responses by HMGB1–nucleosome complexes: implications for the pathogenesis of SLE. Journal of Experimental Medicine, 2008, 205, 3007-3018.	4.2	467

#	Article	IF	CITATIONS
109	High-Mobility Group Box-1 in Ischemia-Reperfusion Injury of the Heart. Circulation, 2008, 117, 3216-3226.	1.6	554
110	A soluble form of the receptor for advanced glycation endproducts (RAGE) is produced by proteolytic cleavage of the membraneâ€bound form by the sheddase a disintegrin and metalloprotease 10 (ADAM10). FASEB Journal, 2008, 22, 3716-3727.	0.2	483
111	Maturing Dendritic Cells Depend on RAGE for In Vivo Homing to Lymph Nodes. Journal of Immunology, 2008, 180, 2270-2275.	0.4	109
112	Multiple Effects of High Mobility Group Box Protein 1 in Skeletal Muscle Regeneration. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 2377-2383.	1.1	95
113	Stage-Specific Secretion of HMGB1 in Cartilage Regulates Endochondral Ossification. Molecular and Cellular Biology, 2007, 27, 5650-5663.	1.1	90
114	Cells migrating to sites of tissue damage in response to the danger signal HMGB1 require NF-κB activation. Journal of Cell Biology, 2007, 179, 33-40.	2.3	237
115	Treatment with HMGB1 inhibitors diminishes CTL-induced liver disease in HBV transgenic mice. Journal of Leukocyte Biology, 2007, 81, 100-107.	1.5	120
116	High-Mobility Group Box 1 Activates Integrin-Dependent Homing of Endothelial Progenitor Cells. Circulation Research, 2007, 100, 204-212.	2.0	284
117	The secretion of HMGB1 is required for the migration of maturing dendritic cells. Journal of Leukocyte Biology, 2007, 81, 84-91.	1.5	214
118	The evolution of High Mobility Group Box (HMGB) chromatin proteins in multicellular animals. Gene, 2007, 387, 133-140.	1.0	78
119	DAMPs, PAMPs and alarmins: all we need to know about danger. Journal of Leukocyte Biology, 2007, 81, 1-5.	1.5	2,383
120	A novel role for HMGB1 in TLR9-mediated inflammatory responses to CpG-DNA. Blood, 2007, 110, 1970-1981.	0.6	420
121	HMGB1: A signal of necrosis. Autoimmunity, 2007, 40, 285-289.	1.2	156
122	Glycyrrhizin Binds to High-Mobility Group Box 1 Protein and Inhibits Its Cytokine Activities. Chemistry and Biology, 2007, 14, 431-441.	6.2	484
123	A novel pathway of HMGB1-mediated inflammatory cell recruitment that requires Mac-1-integrin. EMBO Journal, 2007, 26, 1129-1139.	3.5	344
124	High mobility group box 1 protein is released by neural cells upon different stresses and worsens ischemic neurodegeneration <i>in vitro</i> and <i>in vivo</i> . Journal of Neurochemistry, 2007, 103, 590-603.	2.1	204
125	Highâ€mobility group box 1 (HMCB1) protein at the crossroads between innate and adaptive immunity. Immunological Reviews, 2007, 220, 35-46.	2.8	532
126	Cells migrating to sites of tissue damage in response to the danger signal HMGB1 require NF-κB activation. Journal of Experimental Medicine, 2007, 204, i24-i24.	4.2	1

#	Article	IF	CITATIONS
127	A hyper-dynamic equilibrium between promoter-bound and nucleoplasmic dimers controls NF-κB-dependent gene activity. EMBO Journal, 2006, 25, 798-810.	3.5	192
128	Smooth muscle cells in human atherosclerotic plaques secrete and proliferate in response to high mobility group box 1 protein. FASEB Journal, 2006, 20, 2565-2566.	0.2	157
129	Yeast Nhp6A/B and Mammalian Hmgb1 Facilitate the Maintenance of Genome Stability. Current Biology, 2005, 15, 68-72.	1.8	84
130	Requirement of HMGB1 and RAGE for the maturation of human plasmacytoid dendritic cells. European Journal of Immunology, 2005, 35, 2184-2190.	1.6	175
131	Release of High Mobility Group Box 1 by Dendritic Cells Controls T Cell Activation via the Receptor for Advanced Clycation End Products. Journal of Immunology, 2005, 174, 7506-7515.	0.4	462
132	Exogenous High-Mobility Group Box 1 Protein Induces Myocardial Regeneration After Infarction via Enhanced Cardiac C-Kit + Cell Proliferation and Differentiation. Circulation Research, 2005, 97, e73-83.	2.0	256
133	GR and HMGB1 Interact Only within Chromatin and Influence Each Other's Residence Time. Molecular Cell, 2005, 18, 109-121.	4.5	108
134	HMGB1: guiding immunity from within. Trends in Immunology, 2005, 26, 381-387.	2.9	319
135	HMG proteins: dynamic players in gene regulation and differentiation. Current Opinion in Genetics and Development, 2005, 15, 496-506.	1.5	443
136	Ku70/Ku80 and DNA-dependent Protein Kinase Catalytic Subunit Modulate RAG-mediated Cleavage. Journal of Biological Chemistry, 2004, 279, 29821-29831.	1.6	16
137	Extracellular HMGB1, a signal of tissue damage, induces mesoangioblast migration and proliferation. Journal of Cell Biology, 2004, 164, 441-449.	2.3	428
138	Regulated expression and subcellular localization of HMGB1, a chromatin protein with a cytokine function. Journal of Internal Medicine, 2004, 255, 332-343.	2.7	316
139	HMGB1 is an endogenous immune adjuvant released by necrotic cells. EMBO Reports, 2004, 5, 825-830.	2.0	556
140	Significant (re)location: how to use chromatin and/or abundant proteins as messages of life and death. Trends in Cell Biology, 2004, 14, 287-293.	3.6	51
141	Chromatin and cell death. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2004, 1677, 181-186.	2.4	102
142	High mobility group box 1 protein, a cue for stem cell recruitment. Biochemical Pharmacology, 2004, 68, 1165-1170.	2.0	83
143	Molecular mechanisms in male determination and germ cell differentiation. Cellular and Molecular Life Sciences, 2004, 61, 1907-1925.	2.4	21
144	Mechanisms of systemic vasculitis. Drug Discovery Today Disease Mechanisms, 2004, 1, 297-302.	0.8	7

#	Article	IF	CITATIONS
145	The Long Acidic Tail of High Mobility Group Box 1 (HMGB1) Protein Forms an Extended and Flexible Structure That Interacts with Specific Residues within and between the HMG Boxes. Biochemistry, 2004, 43, 11992-11997.	1.2	94
146	HMGBI MOLECULAR BIOLOGY IN MYELOID CELLS. Shock, 2004, 21, 36.	1.0	0
147	Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. EMBO Journal, 2003, 22, 5551-5560.	3.5	1,071
148	HMGB1, an architectural chromatin protein and extracellular signalling factor, has a spatially and temporally restricted expression pattern in mouse brain. Gene Expression Patterns, 2003, 3, 29-33.	0.3	75
149	HMCB1 interacts differentially with members of the Rel family of transcription factors. Biochemical and Biophysical Research Communications, 2003, 302, 421-426.	1.0	86
150	HMGB proteins and gene expression. Current Opinion in Genetics and Development, 2003, 13, 170-178.	1.5	348
151	Association of Chromatin Proteins High Mobility Group Box (HMGB) 1 and HMGB2 with Mitotic Chromosomes. Molecular Biology of the Cell, 2003, 14, 3414-3426.	0.9	128
152	Sexy splicing: regulatory interplays governing sex determination from Drosophila to mammals. Journal of Cell Science, 2003, 116, 441-445.	1.2	36
153	A nuclear protein complex containing high mobility group proteins B1 and B2, heat shock cognate protein 70, ERp60, and glyceraldehyde-3-phosphate dehydrogenase is involved in the cytotoxic response to DNA modified by incorporation of anticancer nucleoside analogues. Cancer Research, 2003, 63, 100-6.	0.4	91
154	A human short-chain dehydrogenase/reductase gene: structure, chromosomal localization, tissue expression and subcellular localization of its product. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2002, 1574, 215-222.	2.4	18
155	Release of chromatin protein HMCB1 by necrotic cells triggers inflammation. Nature, 2002, 418, 191-195.	13.7	3,748
156	The nuclear protein HMGB1 is secreted by monocytes via a nonâ€classical, vesicleâ€mediated secretory pathway. EMBO Reports, 2002, 3, 995-1001.	2.0	818
157	The DNA chaperone HMGB1 facilitates ACF/CHRAC-dependent nucleosome sliding. EMBO Journal, 2002, 21, 6865-6873.	3.5	219
158	Thermodynamics of HMGB1 Interaction with Duplex DNAâ€. Biochemistry, 2001, 40, 10254-10261.	1.2	60
159	Drosophila Chromosome Condensation Proteins Topoisomerase II and Barren Colocalize with Polycomb and Maintain Fab-7 PRE Silencing. Molecular Cell, 2001, 7, 127-136.	4.5	110
160	Nestin Is a Neuroepithelial Target Gene of Thyroid Transcription Factor-1, a Homeoprotein Required for Forebrain Organogenesis. Journal of Biological Chemistry, 2001, 276, 47807-47813.	1.6	22
161	NEW EMBO MEMBERS' REVIEW: The double life of HMGB1 chromatin protein: architectural factor and extracellular signal. EMBO Journal, 2001, 20, 4337-4340.	3.5	381
162	General transcription factors bind promoters repressed by Polycomb group proteins. Nature, 2001, 412, 651-655.	13.7	231

#	Article	IF	CITATIONS
163	Spatially Precise DNA Bending Is an Essential Activity of the Sox2 Transcription Factor. Journal of Biological Chemistry, 2001, 276, 47296-47302.	1.6	101
164	The High Mobility Group (Hmg) Boxes of the Nuclear Protein Hmg1 Induce Chemotaxis and Cytoskeleton Reorganization in Rat Smooth Muscle Cells. Journal of Cell Biology, 2001, 152, 1197-1206.	2.3	435
165	Hyperpolarization-activated Cyclic Nucleotide-gated Channel 1 Is a Molecular Determinant of the Cardiac Pacemaker Current I f. Journal of Biological Chemistry, 2001, 276, 29233-29241.	1.6	95
166	Upwardly mobile proteins. EMBO Reports, 2000, 1, 109-114.	2.0	146
167	Cloning and expression pattern of a zebrafish homolog of forkhead activin signal transducer (FAST), a transcription factor mediating Nodal-related signals. Mechanisms of Development, 2000, 99, 187-190.	1.7	8
168	High Mobility Group Protein 1 Interacts Specifically with the Core Domain of Human TATA Box-binding Protein and Interferes with Transcription Factor IIB within the Pre-initiation Complex. Journal of Biological Chemistry, 1999, 274, 1628-1634.	1.6	79
169	The lack of chromosomal protein Hmg1 does not disrupt cell growth but causes lethal hypoglycaemia in newborn mice. Nature Genetics, 1999, 22, 276-280.	9.4	476
170	The human gene coding for HCN2, a pacemaker channel of the heart. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1999, 1446, 419-425.	2.4	68
171	Domain-domain interactions in high mobility group 1 protein (HMG1). FEBS Journal, 1999, 260, 692-700.	0.2	32
172	Expression patterns of zebrafish sox11A, sox11B and sox21. Mechanisms of Development, 1999, 89, 167-171.	1.7	52
173	The RAG1 Homeodomain Recruits HMG1 and HMG2 To Facilitate Recombination Signal Sequence Binding and To Enhance the Intrinsic DNA-Bending Activity of RAG1-RAG2. Molecular and Cellular Biology, 1999, 19, 6532-6542.	1.1	112
174	HMG box proteins bind to four-way DNA junctions in their open conformation. EMBO Journal, 1998, 17, 817-826.	3.5	93
175	High mobility group 1 (HMG1) protein in mouse preimplantation embryos. Mechanisms of Development, 1998, 76, 57-66.	1.7	28
176	Flexing DNA: HMG-Box Proteins and Their Partners. American Journal of Human Genetics, 1998, 63, 1573-1577.	2.6	110
177	Enhanced Flexibility of a Bulged DNA Fragment from Fluorescence Anisotropy and Brownian Dynamics. Macromolecules, 1998, 31, 695-702.	2.2	6
178	Hmg4,a New Member of theHmg1/2Gene Family. Genomics, 1998, 49, 247-252.	1.3	87
179	High-Mobility Group Chromatin Proteins 1 and 2 Functionally Interact with Steroid Hormone Receptors To Enhance Their DNA Binding In Vitro and Transcriptional Activity in Mammalian Cells. Molecular and Cellular Biology, 1998, 18, 4471-4487.	1.1	322
180	High Mobility Group 1 Protein Is Not Stably Associated with the Chromosomes of Somatic Cells. Journal of Cell Biology, 1997, 137, 19-26.	2.3	121

#	Article	IF	CITATIONS
181	Mmot1, a New Helix-Loop-Helix Transcription Factor Gene Displaying a Sharp Expression Boundary in the Embryonic Mouse Brain. Journal of Biological Chemistry, 1997, 272, 17632-17639.	1.6	54
182	Recombinant HMG1 Protein Produced in Pichia pastoris: A Nonviral Gene Delivery Agent. BioTechniques, 1997, 22, 718-729.	0.8	48
183	The Active Gene That Encodes Human High Mobility Group 1 Protein (HMG1) Contains Introns and Maps to Chromosome 13. Genomics, 1996, 35, 367-371.	1.3	70
184	Differential Binding of HMG1, HMG2, and a Single HMG Box to Cisplatin-Damaged DNA. Toxicology and Applied Pharmacology, 1996, 141, 532-539.	1.3	17
185	NMR Spectroscopic Analysis of the DNA Conformation Induced by the Human Testis Determining Factor SRY. Biochemistry, 1995, 34, 11998-12004.	1.2	60
186	Conformation of short DNA fragments by modulated fluorescence polarization anisotropy. Biopolymers, 1995, 36, 211-225.	1.2	35
187	Mapping of the Hmg1 gene and of seven related sequences in the mouse. Mammalian Genome, 1995, 6, 581-585.	1.0	21
188	Applying a genetic cantilever. Nature, 1995, 375, 532-532.	13.7	8
189	Evolutionary conservation in the DNA-binding and -bending properties of HMG-boxes from SRY proteins of primates. Gene, 1995, 154, 277-280.	1.0	40
190	Interaction between Cisplatin-modified DNA and the HMG Boxes of HMG 1: DNase I Footprinting and Circular Dichroism. Journal of Molecular Biology, 1995, 246, 243-247.	2.0	46
191	Specific interaction of plant HMG-like proteins with cruciform DNA. Journal of Experimental Botany, 1994, 45, 1493-1496.	2.4	6
192	Mutational analysis of the DNA binding domain A of chromosomal protein HMG1. Nucleic Acids Research, 1994, 22, 285-292.	6.5	65
193	Prokaryotic HU and eukaryotic HMG1: a kinked relationship. Molecular Microbiology, 1994, 14, 1-5.	1.2	71
194	Protein HU binds specifically to kinked DNA. Molecular Microbiology, 1993, 7, 343-350.	1.2	187
195	In vivo recombination and the production of hybrid genes. FEMS Microbiology Letters, 1992, 97, 41-44.	0.7	1
196	Production of functional rat HMG1 protein in Escherichia coli. Gene, 1991, 104, 271-275.	1.0	44
197	Specific recognition of cruciform DNA by nuclear protein HMG1. Science, 1989, 243, 1056-1059.	6.0	624
198	Sequence of the cDNA for one acidic ribosomal protein ofSchizosaccharomyces pombe. Nucleic Acids Research, 1987, 15, 9089-9089.	6.5	17

MARCO EMILIO BIANCHI

#	Article	IF	CITATIONS
199	Identification of the yeast DNA polymerase I gene with antibody probes. Current Genetics, 1985, 10, 245-252.	0.8	30
200	Synapsis and the formation of paranemic joints by E. coli RecA protein. Cell, 1983, 34, 931-939.	13.5	158
201	Insertions, deletions and mismatches in heteroduplex DNA made by recA protein. Cell, 1983, 35, 511-520.	13.5	162
202	Unwinding associated with synapsis of DNA molecules by recA protein Proceedings of the National Academy of Sciences of the United States of America, 1983, 80, 1256-1260.	3.3	60
203	Mn2+ and Mg2+ uptake in Mn-sensitive and Mn-resistant yeast strains. Plant Science Letters, 1981, 22, 345-352.	1.9	18
204	Mutants resistant to manganese in Saccharomyces cerevisiae. Current Genetics, 1981, 4, 215-220.	0.8	17
205	Insights on the NF-κB System Using Live Cell Imaging: Recent Developments and Future Perspectives. Frontiers in Immunology, 0, 13, .	2.2	6