
## Marco Emilio Bianchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4947307/publications.pdf Version: 2024-02-01



ΜΑΡΟΟ ΕΜΙΙΙΟ ΒΙΑΝΟΗ

| #  | Article                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature, 2002, 418, 191-195.                                                                                                                                     | 13.7 | 3,748     |
| 2  | DAMPs, PAMPs and alarmins: all we need to know about danger. Journal of Leukocyte Biology, 2007, 81,<br>1-5.                                                                                                                                | 1.5  | 2,383     |
| 3  | Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. EMBO<br>Journal, 2003, 22, 5551-5560.                                                                                                              | 3.5  | 1,071     |
| 4  | Cancer cell–autonomous contribution of type I interferon signaling to the efficacy of chemotherapy.<br>Nature Medicine, 2014, 20, 1301-1309.                                                                                                | 15.2 | 823       |
| 5  | Endogenous HMGB1 regulates autophagy. Journal of Cell Biology, 2010, 190, 881-892.                                                                                                                                                          | 2.3  | 819       |
| 6  | The nuclear protein HMGB1 is secreted by monocytes via a nonâ€classical, vesicleâ€mediated secretory pathway. EMBO Reports, 2002, 3, 995-1001.                                                                                              | 2.0  | 818       |
| 7  | Toll-like receptor 4 and high-mobility group box-1 are involved in ictogenesis and can be targeted to reduce seizures. Nature Medicine, 2010, 16, 413-419.                                                                                  | 15.2 | 777       |
| 8  | Specific recognition of cruciform DNA by nuclear protein HMG1. Science, 1989, 243, 1056-1059.                                                                                                                                               | 6.0  | 624       |
| 9  | HMGB proteins function as universal sentinels for nucleic-acid-mediated innate immune responses.<br>Nature, 2009, 462, 99-103.                                                                                                              | 13.7 | 602       |
| 10 | Mutually exclusive redox forms of HMGB1 promote cell recruitment or proinflammatory cytokine release. Journal of Experimental Medicine, 2012, 209, 1519-1528.                                                                               | 4.2  | 590       |
| 11 | HMGB1 is an endogenous immune adjuvant released by necrotic cells. EMBO Reports, 2004, 5, 825-830.                                                                                                                                          | 2.0  | 556       |
| 12 | High-Mobility Group Box-1 in Ischemia-Reperfusion Injury of the Heart. Circulation, 2008, 117, 3216-3226.                                                                                                                                   | 1.6  | 554       |
| 13 | Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma.<br>Nature, 2014, 507, 109-113.                                                                                                                 | 13.7 | 547       |
| 14 | HMGB1 promotes recruitment of inflammatory cells to damaged tissues by forming a complex with CXCL12 and signaling via CXCR4. Journal of Experimental Medicine, 2012, 209, 551-563.                                                         | 4.2  | 539       |
| 15 | Highâ€mobility group box 1 (HMGB1) protein at the crossroads between innate and adaptive immunity.<br>Immunological Reviews, 2007, 220, 35-46.                                                                                              | 2.8  | 532       |
| 16 | DAMPs from Cell Death to New Life. Frontiers in Immunology, 2015, 6, 422.                                                                                                                                                                   | 2.2  | 500       |
| 17 | Glycyrrhizin Binds to High-Mobility Group Box 1 Protein and Inhibits Its Cytokine Activities. Chemistry and Biology, 2007, 14, 431-441.                                                                                                     | 6.2  | 484       |
| 18 | A soluble form of the receptor for advanced glycation endproducts (RAGE) is produced by proteolytic cleavage of the membraneâ€bound form by the sheddase a disintegrin and metalloprotease 10 (ADAM10). FASEB Journal, 2008, 22, 3716-3727. | 0.2  | 483       |

| #  | Article                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The lack of chromosomal protein Hmg1 does not disrupt cell growth but causes lethal hypoglycaemia<br>in newborn mice. Nature Genetics, 1999, 22, 276-280.                                                                                             | 9.4 | 476       |
| 20 | Induction of inflammatory and immune responses by HMGB1–nucleosome complexes: implications for the pathogenesis of SLE. Journal of Experimental Medicine, 2008, 205, 3007-3018.                                                                       | 4.2 | 467       |
| 21 | Release of High Mobility Group Box 1 by Dendritic Cells Controls T Cell Activation via the Receptor<br>for Advanced Glycation End Products. Journal of Immunology, 2005, 174, 7506-7515.                                                              | 0.4 | 462       |
| 22 | HMG proteins: dynamic players in gene regulation and differentiation. Current Opinion in Genetics and Development, 2005, 15, 496-506.                                                                                                                 | 1.5 | 443       |
| 23 | The High Mobility Group (Hmg) Boxes of the Nuclear Protein Hmg1 Induce Chemotaxis and<br>Cytoskeleton Reorganization in Rat Smooth Muscle Cells. Journal of Cell Biology, 2001, 152, 1197-1206.                                                       | 2.3 | 435       |
| 24 | Extracellular HMGB1, a signal of tissue damage, induces mesoangioblast migration and proliferation.<br>Journal of Cell Biology, 2004, 164, 441-449.                                                                                                   | 2.3 | 428       |
| 25 | Activated platelets present high mobility group box 1 to neutrophils, inducing autophagy and promoting the extrusion of neutrophil extracellular traps. Journal of Thrombosis and Haemostasis, 2014, 12, 2074-2088.                                   | 1.9 | 426       |
| 26 | A novel role for HMGB1 in TLR9-mediated inflammatory responses to CpG-DNA. Blood, 2007, 110, 1970-1981.                                                                                                                                               | 0.6 | 420       |
| 27 | NEW EMBO MEMBERS' REVIEW: The double life of HMGB1 chromatin protein: architectural factor and extracellular signal. EMBO Journal, 2001, 20, 4337-4340.                                                                                               | 3.5 | 381       |
| 28 | Redox Modification of Cysteine Residues Regulates the Cytokine Activity of High Mobility Group Box-1<br>(HMGB1). Molecular Medicine, 2012, 18, 250-259.                                                                                               | 1.9 | 378       |
| 29 | HMGB1 loves company. Journal of Leukocyte Biology, 2009, 86, 573-576.                                                                                                                                                                                 | 1.5 | 360       |
| 30 | HMGB proteins and gene expression. Current Opinion in Genetics and Development, 2003, 13, 170-178.                                                                                                                                                    | 1.5 | 348       |
| 31 | A novel pathway of HMGB1-mediated inflammatory cell recruitment that requires Mac-1-integrin. EMBO<br>Journal, 2007, 26, 1129-1139.                                                                                                                   | 3.5 | 344       |
| 32 | High-Mobility Group Chromatin Proteins 1 and 2 Functionally Interact with Steroid Hormone<br>Receptors To Enhance Their DNA Binding In Vitro and Transcriptional Activity in Mammalian Cells.<br>Molecular and Cellular Biology, 1998, 18, 4471-4487. | 1.1 | 322       |
| 33 | HMGB1: guiding immunity from within. Trends in Immunology, 2005, 26, 381-387.                                                                                                                                                                         | 2.9 | 319       |
| 34 | Regulated expression and subcellular localization of HMGB1, a chromatin protein with a cytokine function. Journal of Internal Medicine, 2004, 255, 332-343.                                                                                           | 2.7 | 316       |
| 35 | High-Mobility Group Box 1 Activates Integrin-Dependent Homing of Endothelial Progenitor Cells.<br>Circulation Research, 2007, 100, 204-212.                                                                                                           | 2.0 | 284       |
| 36 | Highâ€mobility group box 1 protein orchestrates responses to tissue damage via inflammation, innate<br>and adaptive immunity, and tissue repair. Immunological Reviews, 2017, 280, 74-82.                                                             | 2.8 | 281       |

| #  | Article                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Exogenous High-Mobility Group Box 1 Protein Induces Myocardial Regeneration After Infarction via<br>Enhanced Cardiac C-Kit + Cell Proliferation and Differentiation. Circulation Research, 2005, 97, e73-83.                                             | 2.0  | 256       |
| 38 | Cells migrating to sites of tissue damage in response to the danger signal HMGB1 require NF-κB activation. Journal of Cell Biology, 2007, 179, 33-40.                                                                                                    | 2.3  | 237       |
| 39 | Programmed necrosis induced by asbestos in human mesothelial cells causes high-mobility group box 1 protein release and resultant inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12611-12616. | 3.3  | 234       |
| 40 | General transcription factors bind promoters repressed by Polycomb group proteins. Nature, 2001, 412, 651-655.                                                                                                                                           | 13.7 | 231       |
| 41 | The DNA chaperone HMGB1 facilitates ACF/CHRAC-dependent nucleosome sliding. EMBO Journal, 2002, 21, 6865-6873.                                                                                                                                           | 3.5  | 219       |
| 42 | Disulfide HMGB1 derived from platelets coordinates venous thrombosis in mice. Blood, 2016, 128, 2435-2449.                                                                                                                                               | 0.6  | 219       |
| 43 | The secretion of HMCB1 is required for the migration of maturing dendritic cells. Journal of Leukocyte Biology, 2007, 81, 84-91.                                                                                                                         | 1.5  | 214       |
| 44 | HMGB1 as biomarker and drug target. Pharmacological Research, 2016, 111, 534-544.                                                                                                                                                                        | 3.1  | 214       |
| 45 | Cancer Cell Secretion of the DAMP Protein HMGB1 Supports Progression in Malignant Mesothelioma.<br>Cancer Research, 2012, 72, 3290-3301.                                                                                                                 | 0.4  | 213       |
| 46 | High mobility group box 1 protein is released by neural cells upon different stresses and worsens<br>ischemic neurodegeneration <i>in vitro</i> and <i>in vivo</i> . Journal of Neurochemistry, 2007, 103,<br>590-603.                                   | 2.1  | 204       |
| 47 | Inflammatory and alternatively activated human macrophages attract vessel-associated stem cells,<br>relying on separate HMGB1- and MMP-9-dependent pathways. Journal of Leukocyte Biology, 2009, 85,<br>779-787.                                         | 1.5  | 194       |
| 48 | Substantial Histone Reduction Modulates Genomewide Nucleosomal Occupancy and Global<br>Transcriptional Output. PLoS Biology, 2011, 9, e1001086.                                                                                                          | 2.6  | 193       |
| 49 | A hyper-dynamic equilibrium between promoter-bound and nucleoplasmic dimers controls<br>NF-IºB-dependent gene activity. EMBO Journal, 2006, 25, 798-810.                                                                                                 | 3.5  | 192       |
| 50 | HMGB1 and leukocyte migration during trauma and sterile inflammation. Molecular Immunology, 2013, 55, 76-82.                                                                                                                                             | 1.0  | 189       |
| 51 | Protein HU binds specifically to kinked DNA. Molecular Microbiology, 1993, 7, 343-350.                                                                                                                                                                   | 1.2  | 187       |
| 52 | Requirement of HMGB1 and RAGE for the maturation of human plasmacytoid dendritic cells. European<br>Journal of Immunology, 2005, 35, 2184-2190.                                                                                                          | 1.6  | 175       |
| 53 | Insertions, deletions and mismatches in heteroduplex DNA made by recA protein. Cell, 1983, 35, 511-520.                                                                                                                                                  | 13.5 | 162       |
| 54 | Synapsis and the formation of paranemic joints by E. coli RecA protein. Cell, 1983, 34, 931-939.                                                                                                                                                         | 13.5 | 158       |

| #  | Article                                                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Smooth muscle cells in human atherosclerotic plaques secrete and proliferate in response to high mobility group box 1 protein. FASEB Journal, 2006, 20, 2565-2566.                                                                                                                 | 0.2 | 157       |
| 56 | Interleukin-1 type 1 receptor/Toll-like receptor signalling in epilepsy: the importance of IL-1beta and high-mobility group box 1. Journal of Internal Medicine, 2011, 270, 319-326.                                                                                               | 2.7 | 157       |
| 57 | HMGB1: A signal of necrosis. Autoimmunity, 2007, 40, 285-289.                                                                                                                                                                                                                      | 1.2 | 156       |
| 58 | TLR4-mediated skin carcinogenesis is dependent on immune and radioresistant cells. EMBO Journal, 2010, 29, 2242-2252.                                                                                                                                                              | 3.5 | 148       |
| 59 | Upwardly mobile proteins. EMBO Reports, 2000, 1, 109-114.                                                                                                                                                                                                                          | 2.0 | 146       |
| 60 | High-Mobility Group Box 1 Protein in Human and Murine Skin: Involvement in Wound Healing. Journal<br>of Investigative Dermatology, 2008, 128, 1545-1553.                                                                                                                           | 0.3 | 146       |
| 61 | The Chemokine Receptor CXCR4 in Cell Proliferation and Tissue Regeneration. Frontiers in Immunology, 2020, 11, 2109.                                                                                                                                                               | 2.2 | 142       |
| 62 | Disulfide-Containing High Mobility Group Box-1 Promotes <i>N</i> -Methyl- <scp>d</scp> -Aspartate<br>Receptor Function and Excitotoxicity by Activating Toll-Like Receptor 4-Dependent Signaling in<br>Hippocampal Neurons. Antioxidants and Redox Signaling, 2014, 21, 1726-1740. | 2.5 | 141       |
| 63 | Receptor for Advanced Glycation Endproducts is upregulated in temporal lobe epilepsy and contributes to experimental seizures. Neurobiology of Disease, 2013, 58, 102-114.                                                                                                         | 2.1 | 139       |
| 64 | Dangers In and Out. Science, 2009, 323, 1683-1684.                                                                                                                                                                                                                                 | 6.0 | 136       |
| 65 | High mobility group box 1 orchestrates tissue regeneration via CXCR4. Journal of Experimental Medicine, 2018, 215, 303-318.                                                                                                                                                        | 4.2 | 131       |
| 66 | Association of Chromatin Proteins High Mobility Group Box (HMGB) 1 and HMGB2 with Mitotic Chromosomes. Molecular Biology of the Cell, 2003, 14, 3414-3426.                                                                                                                         | 0.9 | 128       |
| 67 | Aging-related loss of the chromatin protein HMGB2 in articular cartilage is linked to reduced cellularity and osteoarthritis. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1181-1186.                                               | 3.3 | 124       |
| 68 | NF-κB oscillations translate into functionally related patterns of gene expression. ELife, 2016, 5, e09100.                                                                                                                                                                        | 2.8 | 123       |
| 69 | High Mobility Group 1 Protein Is Not Stably Associated with the Chromosomes of Somatic Cells.<br>Journal of Cell Biology, 1997, 137, 19-26.                                                                                                                                        | 2.3 | 121       |
| 70 | Treatment with HMGB1 inhibitors diminishes CTL-induced liver disease in HBV transgenic mice. Journal of Leukocyte Biology, 2007, 81, 100-107.                                                                                                                                      | 1.5 | 120       |
| 71 | Platelet microparticles sustain autophagy-associated activation of neutrophils in systemic sclerosis.<br>Science Translational Medicine, 2018, 10, .                                                                                                                               | 5.8 | 118       |
| 72 | The Receptor for Advanced Glycation End-Products (RAGE) Is Only Present in Mammals, and Belongs to a Family of Cell Adhesion Molecules (CAMs). PLoS ONE, 2014, 9, e86903.                                                                                                          | 1.1 | 115       |

## Marco Emilio Bianchi

| #  | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | The RAG1 Homeodomain Recruits HMG1 and HMG2 To Facilitate Recombination Signal Sequence Binding and To Enhance the Intrinsic DNA-Bending Activity of RAG1-RAG2. Molecular and Cellular Biology, 1999, 19, 6532-6542.          | 1.1 | 112       |
| 74 | Flexing DNA: HMG-Box Proteins and Their Partners. American Journal of Human Genetics, 1998, 63, 1573-1577.                                                                                                                    | 2.6 | 110       |
| 75 | Drosophila Chromosome Condensation Proteins Topoisomerase II and Barren Colocalize with<br>Polycomb and Maintain Fab-7 PRE Silencing. Molecular Cell, 2001, 7, 127-136.                                                       | 4.5 | 110       |
| 76 | Maturing Dendritic Cells Depend on RAGE for In Vivo Homing to Lymph Nodes. Journal of Immunology, 2008, 180, 2270-2275.                                                                                                       | 0.4 | 109       |
| 77 | GR and HMGB1 Interact Only within Chromatin and Influence Each Other's Residence Time. Molecular<br>Cell, 2005, 18, 109-121.                                                                                                  | 4.5 | 108       |
| 78 | HMGB1: the missing link between diabetes mellitus and heart failure. Basic Research in Cardiology, 2010, 105, 805-820.                                                                                                        | 2.5 | 105       |
| 79 | Live-cell p53 single-molecule binding is modulated by C-terminal acetylation and correlates with transcriptional activity. Nature Communications, 2017, 8, 313.                                                               | 5.8 | 104       |
| 80 | Sustained Oscillations of NF-κB Produce Distinct Genome Scanning and Gene Expression Profiles. PLoS<br>ONE, 2009, 4, e7163.                                                                                                   | 1.1 | 104       |
| 81 | Chromatin and cell death. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2004, 1677,<br>181-186.                                                                                                                   | 2.4 | 102       |
| 82 | Spatially Precise DNA Bending Is an Essential Activity of the Sox2 Transcription Factor. Journal of Biological Chemistry, 2001, 276, 47296-47302.                                                                             | 1.6 | 101       |
| 83 | Requirement of HMGB1 for stromal cell-derived factor-1/CXCL12-dependent migration of macrophages and dendritic cells. Journal of Leukocyte Biology, 2009, 86, 609-615.                                                        | 1.5 | 100       |
| 84 | The Janus face of HMGB1 in heart disease: a necessary update. Cellular and Molecular Life Sciences, 2019, 76, 211-229.                                                                                                        | 2.4 | 99        |
| 85 | Aspirin's Active Metabolite Salicylic Acid Targets High Mobility Group Box 1 to Modulate Inflammatory<br>Responses. Molecular Medicine, 2015, 21, 526-535.                                                                    | 1.9 | 97        |
| 86 | Kupffer Cells Hasten Resolution of Liver Immunopathology in Mouse Models of Viral Hepatitis. PLoS<br>Pathogens, 2011, 7, e1002061.                                                                                            | 2.1 | 96        |
| 87 | Hyperpolarization-activated Cyclic Nucleotide-gated Channel 1 Is a Molecular Determinant of the Cardiac Pacemaker Current I f. Journal of Biological Chemistry, 2001, 276, 29233-29241.                                       | 1.6 | 95        |
| 88 | Multiple Effects of High Mobility Group Box Protein 1 in Skeletal Muscle Regeneration.<br>Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 2377-2383.                                                            | 1.1 | 95        |
| 89 | The Long Acidic Tail of High Mobility Group Box 1 (HMGB1) Protein Forms an Extended and Flexible<br>Structure That Interacts with Specific Residues within and between the HMG Boxes. Biochemistry,<br>2004, 43, 11992-11997. | 1.2 | 94        |
| 90 | A Systematic Nomenclature for the Redox States of High Mobility Group Box (HMGB) Proteins.<br>Molecular Medicine, 2014, 20, 135-137.                                                                                          | 1.9 | 94        |

| #   | Article                                                                                                                                                                                                                                                                                                      | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | HMG box proteins bind to four-way DNA junctions in their open conformation. EMBO Journal, 1998, 17, 817-826.                                                                                                                                                                                                 | 3.5  | 93        |
| 92  | Epithelial calcineurin controls microbiota-dependent intestinal tumor development. Nature Medicine,<br>2016, 22, 506-515.                                                                                                                                                                                    | 15.2 | 93        |
| 93  | miR-34a Promotes Vascular Smooth Muscle Cell Calcification by Downregulating SIRT1 (Sirtuin 1) and Axl (AXL Receptor Tyrosine Kinase). Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 2079-2090.                                                                                              | 1.1  | 93        |
| 94  | A nuclear protein complex containing high mobility group proteins B1 and B2, heat shock cognate protein 70, ERp60, and glyceraldehyde-3-phosphate dehydrogenase is involved in the cytotoxic response to DNA modified by incorporation of anticancer nucleoside analogues. Cancer Research, 2003, 63, 100-6. | 0.4  | 91        |
| 95  | Stage-Specific Secretion of HMGB1 in Cartilage Regulates Endochondral Ossification. Molecular and<br>Cellular Biology, 2007, 27, 5650-5663.                                                                                                                                                                  | 1.1  | 90        |
| 96  | Inhibitor of NF-κB Kinases α and β Are Both Essential for High Mobility Group Box 1-Mediated Chemotaxis.<br>Journal of Immunology, 2010, 184, 4497-4509.                                                                                                                                                     | 0.4  | 90        |
| 97  | Hmg4,a New Member of theHmg1/2Gene Family. Genomics, 1998, 49, 247-252.                                                                                                                                                                                                                                      | 1.3  | 87        |
| 98  | HMGB1 interacts differentially with members of the Rel family of transcription factors. Biochemical and Biophysical Research Communications, 2003, 302, 421-426.                                                                                                                                             | 1.0  | 86        |
| 99  | Yeast Nhp6A/B and Mammalian Hmgb1 Facilitate the Maintenance of Genome Stability. Current Biology, 2005, 15, 68-72.                                                                                                                                                                                          | 1.8  | 84        |
| 100 | High mobility group box 1 protein, a cue for stem cell recruitment. Biochemical Pharmacology, 2004,<br>68, 1165-1170.                                                                                                                                                                                        | 2.0  | 83        |
| 101 | Oxidative Stress Elicits Platelet/Leukocyte Inflammatory Interactions <i>via</i> HMGB1: A Candidate for<br>Microvessel Injury in Sytemic Sclerosis. Antioxidants and Redox Signaling, 2014, 20, 1060-1074.                                                                                                   | 2.5  | 81        |
| 102 | High Mobility Group Protein 1 Interacts Specifically with the Core Domain of Human TATA Box-binding<br>Protein and Interferes with Transcription Factor IIB within the Pre-initiation Complex. Journal of<br>Biological Chemistry, 1999, 274, 1628-1634.                                                     | 1.6  | 79        |
| 103 | The evolution of High Mobility Group Box (HMGB) chromatin proteins in multicellular animals. Gene, 2007, 387, 133-140.                                                                                                                                                                                       | 1.0  | 78        |
| 104 | HMGB1, an architectural chromatin protein and extracellular signalling factor, has a spatially and temporally restricted expression pattern in mouse brain. Gene Expression Patterns, 2003, 3, 29-33.                                                                                                        | 0.3  | 75        |
| 105 | Prokaryotic HU and eukaryotic HMG1: a kinked relationship. Molecular Microbiology, 1994, 14, 1-5.                                                                                                                                                                                                            | 1.2  | 71        |
| 106 | The Active Gene That Encodes Human High Mobility Group 1 Protein (HMG1) Contains Introns and Maps to Chromosome 13. Genomics, 1996, 35, 367-371.                                                                                                                                                             | 1.3  | 70        |
| 107 | HuR and miR-1192 regulate myogenesis by modulating the translation of HMGB1 mRNA. Nature Communications, 2013, 4, 2388.                                                                                                                                                                                      | 5.8  | 69        |
| 108 | The human gene coding for HCN2, a pacemaker channel of the heart. Biochimica Et Biophysica Acta<br>Gene Regulatory Mechanisms, 1999, 1446, 419-425.                                                                                                                                                          | 2.4  | 68        |

| #   | Article                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | The adhesion molecule NCAM promotes ovarian cancer progression via FGFR signalling. EMBO<br>Molecular Medicine, 2011, 3, 480-494.                                                       | 3.3 | 67        |
| 110 | Mutational analysis of the DNA binding domain A of chromosomal protein HMG1. Nucleic Acids<br>Research, 1994, 22, 285-292.                                                              | 6.5 | 65        |
| 111 | Aspirin delays mesothelioma growth by inhibiting HMGB1-mediated tumor progression. Cell Death and Disease, 2015, 6, e1786-e1786.                                                        | 2.7 | 61        |
| 112 | Regulation of Dendritic- and T-Cell Fate by Injury-Associated Endogenous Signals. Critical Reviews in<br>Immunology, 2009, 29, 69-86.                                                   | 1.0 | 61        |
| 113 | Unwinding associated with synapsis of DNA molecules by recA protein Proceedings of the National Academy of Sciences of the United States of America, 1983, 80, 1256-1260.               | 3.3 | 60        |
| 114 | NMR Spectroscopic Analysis of the DNA Conformation Induced by the Human Testis Determining Factor SRY. Biochemistry, 1995, 34, 11998-12004.                                             | 1.2 | 60        |
| 115 | Thermodynamics of HMGB1 Interaction with Duplex DNAâ€. Biochemistry, 2001, 40, 10254-10261.                                                                                             | 1.2 | 60        |
| 116 | HMGB1 is upregulated in the airways in asthma and potentiates airway smooth muscle contraction via TLR4. Journal of Allergy and Clinical Immunology, 2017, 140, 584-587.e8.             | 1.5 | 55        |
| 117 | Mmot1, a New Helix-Loop-Helix Transcription Factor Gene Displaying a Sharp Expression Boundary in the Embryonic Mouse Brain. Journal of Biological Chemistry, 1997, 272, 17632-17639.   | 1.6 | 54        |
| 118 | Brain-released alarmins and stress response synergize in accelerating atherosclerosis progression after stroke. Science Translational Medicine, 2018, 10, .                             | 5.8 | 54        |
| 119 | The IL-1/IL-1 receptor axis and tumor cell released inflammasome adaptor ASC are key regulators of TSLP secretion by cancer associated fibroblasts in pancreatic cancer. , 2019, 7, 45. |     | 54        |
| 120 | Expression patterns of zebrafish sox11A, sox11B and sox21. Mechanisms of Development, 1999, 89, 167-171.                                                                                | 1.7 | 52        |
| 121 | Significant (re)location: how to use chromatin and/or abundant proteins as messages of life and death. Trends in Cell Biology, 2004, 14, 287-293.                                       | 3.6 | 51        |
| 122 | Src family kinases are necessary for cell migration induced by extracellular HMGB1. Journal of Leukocyte Biology, 2009, 86, 617-623.                                                    | 1.5 | 51        |
| 123 | Exploring the biological functional mechanism of the HMGB1/TLR4/MD-2 complex by surface plasmon resonance. Molecular Medicine, 2018, 24, 21.                                            | 1.9 | 50        |
| 124 | Protective targeting of high mobility group box chromosomal protein 1 in a spontaneous arthritis model. Arthritis and Rheumatism, 2010, 62, 2963-2972.                                  | 6.7 | 49        |
| 125 | Recombinant HMG1 Protein Produced in Pichia pastoris: A Nonviral Gene Delivery Agent.<br>BioTechniques, 1997, 22, 718-729.                                                              | 0.8 | 48        |
| 126 | LPS-Challenged Macrophages Release Microvesicles Coated With Histones. Frontiers in Immunology, 2018, 9, 1463.                                                                          | 2.2 | 47        |

| #   | Article                                                                                                                                                                                          | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Interaction between Cisplatin-modified DNA and the HMG Boxes of HMG 1: DNase I Footprinting and<br>Circular Dichroism. Journal of Molecular Biology, 1995, 246, 243-247.                         | 2.0 | 46        |
| 128 | Production of functional rat HMG1 protein in Escherichia coli. Gene, 1991, 104, 271-275.                                                                                                         | 1.0 | 44        |
| 129 | 5â€Fluorouracil causes leukocytes attraction in the peritoneal cavity by activating autophagy and HMGB1 release in colon carcinoma cells. International Journal of Cancer, 2015, 136, 1381-1389. | 2.3 | 44        |
| 130 | HMGB1 targeting by ethyl pyruvate suppresses malignant phenotype of human mesothelioma.<br>Oncotarget, 2017, 8, 22649-22661.                                                                     | 0.8 | 43        |
| 131 | High mobility group B2 is secreted by myeloid cells and has mitogenic and chemoattractant activities similar to high mobility group B1. Autoimmunity, 2009, 42, 308-310.                         | 1.2 | 42        |
| 132 | Citrullination Licenses Calpain to Decondense Nuclei in Neutrophil Extracellular Trap Formation.<br>Frontiers in Immunology, 2019, 10, 2481.                                                     | 2.2 | 41        |
| 133 | Evolutionary conservation in the DNA-binding and -bending properties of HMG-boxes from SRY proteins of primates. Gene, 1995, 154, 277-280.                                                       | 1.0 | 40        |
| 134 | Redox-Mediated Mechanisms Fuel Monocyte Responses to CXCL12/HMGB1 in Active Rheumatoid<br>Arthritis. Frontiers in Immunology, 2018, 9, 2118.                                                     | 2.2 | 40        |
| 135 | Leukocyte HMGB1 Is Required for Vessel Remodeling in Regenerating Muscles. Journal of Immunology, 2014, 192, 5257-5264.                                                                          | 0.4 | 39        |
| 136 | How macrophages ring the inflammation alarm. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2866-2867.                                              | 3.3 | 38        |
| 137 | Sexy splicing: regulatory interplays governing sex determination from Drosophila to mammals.<br>Journal of Cell Science, 2003, 116, 441-445.                                                     | 1.2 | 36        |
| 138 | Human malignant mesothelioma is recapitulated in immunocompetent BALB/c mice injected with murine AB cells. Scientific Reports, 2016, 6, 22850.                                                  | 1.6 | 36        |
| 139 | Conformation of short DNA fragments by modulated fluorescence polarization anisotropy.<br>Biopolymers, 1995, 36, 211-225.                                                                        | 1.2 | 35        |
| 140 | Damage Associated Molecular Pattern Molecule-Induced microRNAs (DAMPmiRs) in Human Peripheral<br>Blood Mononuclear Cells. PLoS ONE, 2012, 7, e38899.                                             | 1.1 | 35        |
| 141 | Diflunisal targets the <scp>HMGB</scp> 1/ <scp>CXCL</scp> 12 heterocomplex and blocks immune cell recruitment. EMBO Reports, 2019, 20, e47788.                                                   | 2.0 | 34        |
| 142 | High-Throughput Analysis of NF-κB Dynamics in Single Cells Reveals Basal Nuclear Localization of NF-κB<br>and Spontaneous Activation of Oscillations. PLoS ONE, 2014, 9, e90104.                 | 1.1 | 33        |
| 143 | Domain-domain interactions in high mobility group 1 protein (HMG1). FEBS Journal, 1999, 260, 692-700.                                                                                            | 0.2 | 32        |
| 144 | Identification of the yeast DNA polymerase I gene with antibody probes. Current Genetics, 1985, 10, 245-252.                                                                                     | 0.8 | 30        |

Marco Emilio Bianchi

| #   | Article                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Redox remodeling: a candidate regulator of HMGB1 function in injured skeletal muscle. Annals of the<br>New York Academy of Sciences, 2010, 1209, 83-90.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.8 | 29        |
| 146 | High mobility group 1 (HMG1) protein in mouse preimplantation embryos. Mechanisms of Development, 1998, 76, 57-66.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.7 | 28        |
| 147 | CXCR4/CXCL12 Activities in the Tumor Microenvironment and Implications for Tumor Immunotherapy. Cancers, 2022, 14, 2314.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.7 | 27        |
| 148 | Oxidative stress controls the choice of alternative last exons via a Brahma–BRCA1–CstF pathway.<br>Nucleic Acids Research, 2017, 45, 902-914.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.5 | 26        |
| 149 | Rebalancing expression of HMGB1 redox isoforms to counteract muscular dystrophy. Science<br>Translational Medicine, 2021, 13, .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.8 | 26        |
| 150 | Nucleosomes effectively shield DNA from radiation damage in living cells. Nucleic Acids Research, 2020, 48, 8993-9006.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.5 | 25        |
| 151 | Redox modifications of cysteine residues regulate the cytokine activity of HMGB1. Molecular Medicine, 2021, 27, 58.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.9 | 25        |
| 152 | Nucleosome loss facilitates the chemotactic response of macrophages. Journal of Internal Medicine, 2014, 276, 454-469.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.7 | 24        |
| 153 | The shedding-derived soluble receptor for advanced glycation endproducts sustains inflammation<br>during acute Pseudomonas aeruginosa lung infection. Biochimica Et Biophysica Acta - General<br>Subjects, 2017, 1861, 354-364.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.1 | 24        |
| 154 | Oxidation of HMGB1 Is a Dynamically Regulated Process in Physiological and Pathological Conditions.<br>Frontiers in Immunology, 2020, 11, 1122.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.2 | 23        |
| 155 | Nestin Is a Neuroepithelial Target Gene of Thyroid Transcription Factor-1, a Homeoprotein Required for Forebrain Organogenesis. Journal of Biological Chemistry, 2001, 276, 47807-47813.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.6 | 22        |
| 156 | Extracellular high mobility group box-1 inhibits R5 and X4 HIV-1 strains replication in mononuclear phagocytes without induction of chemokines and cytokines. Aids, 2009, 23, 567-577.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.0 | 22        |
| 157 | Killing cancer cells, twice with one shot. Cell Death and Differentiation, 2014, 21, 1-2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.0 | 22        |
| 158 | Mapping of the Hmg1 gene and of seven related sequences in the mouse. Mammalian Genome, 1995, 6, 581-585.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.0 | 21        |
| 159 | Molecular mechanisms in male determination and germ cell differentiation. Cellular and Molecular<br>Life Sciences, 2004, 61, 1907-1925.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.4 | 21        |
| 160 | A simple model of <mml:math <br="" altimg="si0030.gif" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll"&gt;<mml:mi>NF</mml:mi><mml:mi<br>mathvariant="normal"&gt;-<mml:mi><sup>°</sup></mml:mi><mml:mi<br>mathvariant="normal"&gt;B<sup>°</sup><ml:math>advariant="normal"&gt;B</ml:math>advariant="normal"&gt;Badvariant="normal"&gt;Badvariant="normal"&gt;Badvariant="normal"&gt;Badvariant="normal"&gt;Badvariant="normal"&gt;Badvariant="normal"&gt;Badvariant="normal"&gt;Badvariant="normal"&gt;Badvariant="normal"&gt;Badvariant="normal"&gt;Badvariant="normal"&gt;Badvariant="normal"&gt;Badvariant="normal"&gt;Badvariant="normal"&gt;Badvariant="normal"&gt;Badvariant="normal"&gt;Badvariant="normal"&gt;Badvariant="normal"&gt;Badvariant="normal"&gt;Badvariant="normal"&gt;Badvariant="normal"&gt;Badvariant="normal"&gt;Badvariant="normal"&gt;Badvariant="normal"&gt;Badvariant="normal"&gt;Badvariant="normal"&gt;Badvariant="normal"&gt;Badvariant="normal"&gt;Badvariant="normal"&gt;Badvariant="normal"&gt;Badvariant="normal"&gt;Badvariant="normal"&gt;Badvariant="normal"&gt;Badvariant="normal"&gt;Badvariant="normal"&gt;Badvariant="normal"&gt;Advariant="normal"&gt;Advariant="normal"&gt;Advariant="normal"&gt;Advariant="normal"&gt;Advariant="normal"&gt;Advariant="normal"&gt;Advariant="normal"&gt;Advariant="normal"&gt;Advariant="normal"&gt;Advariant="normal"&gt;Advariant="normal"&gt;Advariant="normal"Advariant="normal"&gt;Advariant="normal"</mml:mi<br></mml:mi<br></mml:math> | 0.8 | 21        |
| 161 | Journal of Theoretical Biology, 2014, 347, 44-53.<br>DNA-based strategies for blocking HMGB1 cytokine activity: design, synthesis and preliminary in<br>vitro/in vivo assays of DNA and DNA-like duplexes. Molecular BioSystems, 2011, 7, 1742.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.9 | 20        |
| 162 | Leukocytes recruited by tumor-derived HMGB1 sustain peritoneal carcinomatosis. Oncolmmunology, 2016, 5, e1122860.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.1 | 20        |

| #   | Article                                                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Mn2+ and Mg2+ uptake in Mn-sensitive and Mn-resistant yeast strains. Plant Science Letters, 1981, 22, 345-352.                                                                                                                             | 1.9 | 18        |
| 164 | A human short-chain dehydrogenase/reductase gene: structure, chromosomal localization, tissue<br>expression and subcellular localization of its product. Biochimica Et Biophysica Acta Gene Regulatory<br>Mechanisms, 2002, 1574, 215-222. | 2.4 | 18        |
| 165 | From Human Megakaryocytes to Platelets: Effects of Aspirin on High-Mobility Group Box 1/Receptor<br>for Advanced Glycation End Products Axis. Frontiers in Immunology, 2017, 8, 1946.                                                      | 2.2 | 18        |
| 166 | Mutants resistant to manganese in Saccharomyces cerevisiae. Current Genetics, 1981, 4, 215-220.                                                                                                                                            | 0.8 | 17        |
| 167 | Sequence of the cDNA for one acidic ribosomal protein ofSchizosaccharomyces pombe. Nucleic Acids Research, 1987, 15, 9089-9089.                                                                                                            | 6.5 | 17        |
| 168 | Differential Binding of HMG1, HMG2, and a Single HMG Box to Cisplatin-Damaged DNA. Toxicology and Applied Pharmacology, 1996, 141, 532-539.                                                                                                | 1.3 | 17        |
| 169 | Ku70/Ku80 and DNA-dependent Protein Kinase Catalytic Subunit Modulate RAG-mediated Cleavage.<br>Journal of Biological Chemistry, 2004, 279, 29821-29831.                                                                                   | 1.6 | 16        |
| 170 | Loss of Endogenous HMGB2 Promotes Cardiac Dysfunction and Pressure Overload-Induced Heart<br>Failure in Mice. Circulation Journal, 2019, 83, 368-378.                                                                                      | 0.7 | 16        |
| 171 | Several Nuclear Events during Apoptosis Depend on Caspase-3 Activation but Do Not Constitute a<br>Common Pathway. PLoS ONE, 2009, 4, e6234.                                                                                                | 1.1 | 16        |
| 172 | Single-cell analyses reveal an attenuated NF-κB response in the Salmonella-infected fibroblast.<br>Virulence, 2017, 8, 719-740.                                                                                                            | 1.8 | 15        |
| 173 | Soluble Receptor for Advanced Glycation End-products regulates age-associated Cardiac Fibrosis.<br>International Journal of Biological Sciences, 2021, 17, 2399-2416.                                                                      | 2.6 | 14        |
| 174 | HMGB1 signaling phosphorylates Ku70 and impairs DNA damage repair in Alzheimer's disease pathology.<br>Communications Biology, 2021, 4, 1175.                                                                                              | 2.0 | 14        |
| 175 | β-Arrestin1 and β-Arrestin2 Are Required to Support the Activity of the CXCL12/HMGB1 Heterocomplex on CXCR4. Frontiers in Immunology, 2020, 11, 550824.                                                                                    | 2.2 | 13        |
| 176 | Platelet Phagocytosis via Pâ€selectin Glycoprotein Ligand 1 and Accumulation of Microparticles in Systemic Sclerosis. Arthritis and Rheumatology, 2022, 74, 318-328.                                                                       | 2.9 | 12        |
| 177 | Histone content increases in differentiating embryonic stem cells. Frontiers in Physiology, 2014, 5, 330.                                                                                                                                  | 1.3 | 11        |
| 178 | First Responders Shape a Prompt and Sharp NF-κB-Mediated Transcriptional Response to TNF-α. IScience, 2020, 23, 101529.                                                                                                                    | 1.9 | 11        |
| 179 | CXCR4 engagement triggers CD47 internalization and antitumor immunization in a mouse model of mesothelioma. EMBO Molecular Medicine, 2021, 13, e12344.                                                                                     | 3.3 | 11        |
| 180 | Interplay between stochasticity and negative feedback leads to pulsed dynamics and distinct gene activity patterns. Physical Review E, 2015, 92, 022711.                                                                                   | 0.8 | 10        |

| #   | Article                                                                                                                                                                                                                        | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 181 | Pharmacological or genetic inhibition of iNOS prevents cachexiaâ€mediated muscle wasting and its associated metabolism defects. EMBO Molecular Medicine, 2021, 13, e13591.                                                     | 3.3  | 9         |
| 182 | Applying a genetic cantilever. Nature, 1995, 375, 532-532.                                                                                                                                                                     | 13.7 | 8         |
| 183 | Cloning and expression pattern of a zebrafish homolog of forkhead activin signal transducer (FAST),<br>a transcription factor mediating Nodal-related signals. Mechanisms of Development, 2000, 99, 187-190.                   | 1.7  | 8         |
| 184 | Ancient News: HMGBs are Universal Sentinels. Journal of Molecular Cell Biology, 2010, 2, 116-117.                                                                                                                              | 1.5  | 8         |
| 185 | Mechanisms of systemic vasculitis. Drug Discovery Today Disease Mechanisms, 2004, 1, 297-302.                                                                                                                                  | 0.8  | 7         |
| 186 | Specific interaction of plant HMG-like proteins with cruciform DNA. Journal of Experimental Botany, 1994, 45, 1493-1496.                                                                                                       | 2.4  | 6         |
| 187 | Enhanced Flexibility of a Bulged DNA Fragment from Fluorescence Anisotropy and Brownian Dynamics.<br>Macromolecules, 1998, 31, 695-702.                                                                                        | 2.2  | 6         |
| 188 | The Mouse-Specific Splice Variant mRAGE_v4 Encodes a Membrane-Bound RAGE That Is Resistant to Shedding and Does Not Contribute to the Production of Soluble RAGE. PLoS ONE, 2016, 11, e0153832.                                | 1.1  | 6         |
| 189 | Insights on the NF-Î <sup>®</sup> B System Using Live Cell Imaging: Recent Developments and Future Perspectives. Frontiers in Immunology, 0, 13, .                                                                             | 2.2  | 6         |
| 190 | The binding domain of the HMGB1 inhibitor carbenoxolone: Theory and experiment. Chemical Physics<br>Letters, 2008, 456, 236-242.                                                                                               | 1.2  | 5         |
| 191 | Editorial: A recipe for inflammation. Journal of Leukocyte Biology, 2009, 86, 471-472.                                                                                                                                         | 1.5  | 5         |
| 192 | HMGB1 promotes CXCL12â€dependent egress of murine B cells from Peyer's patches in homeostasis.<br>European Journal of Immunology, 2021, 51, 1980-1991.                                                                         | 1.6  | 5         |
| 193 | Immunogenic cell death and immunogenic surrender: related but distinct mechanisms of immune surveillance. Cell Death and Disease, 2021, 12, 869.                                                                               | 2.7  | 5         |
| 194 | Exploiting Live Imaging to Track Nuclei During Myoblast Differentiation and Fusion. Journal of Visualized Experiments, 2019, , .                                                                                               | 0.2  | 4         |
| 195 | Stress and Alarmins. Report from the 9th iD&EAs meeting. Cell Death and Disease, 2019, 10, 937.                                                                                                                                | 2.7  | 3         |
| 196 | Discovery of 5,5′-Methylenedi-2,3-Cresotic Acid as a Potent Inhibitor of the Chemotactic Activity of the<br>HMGB1·CXCL12 Heterocomplex Using Virtual Screening and NMR Validation. Frontiers in Chemistry,<br>2020, 8, 598710. | 1.8  | 3         |
| 197 | Expression of Concern to: Redox modification of cysteine residues regulates the cytokine activity of high mobility group box-1 (HMGB1). Molecular Medicine, 2020, 26, 18.                                                      | 1.9  | 3         |
| 198 | Histone acetylation landscape in S. cerevisiae nhp6ab mutants reflects altered glucose metabolism.<br>Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129454.                                                    | 1.1  | 2         |

| #   | Article                                                                                                                                                             | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | In vivo recombination and the production of hybrid genes. FEMS Microbiology Letters, 1992, 97, 41-44.                                                               | 0.7 | 1         |
| 200 | Cells migrating to sites of tissue damage in response to the danger signal HMGB1 require NF-κB<br>activation. Journal of Experimental Medicine, 2007, 204, i24-i24. | 4.2 | 1         |
| 201 | HMGBI MOLECULAR BIOLOGY IN MYELOID CELLS. Shock, 2004, 21, 36.                                                                                                      | 1.0 | 0         |
| 202 | Probing p53 Activation by Live-Cell Single-Molecule Chromatin Binding Measurements. Biophysical<br>Journal, 2018, 114, 682a.                                        | 0.2 | 0         |
| 203 | Pulsed Labelling of Endogenous p53 to Dissect the Role of its Oligomerization and Binding in Stress<br>Responses. Biophysical Journal, 2018, 114, 169a-170a.        | 0.2 | 0         |
| 204 | Endogenous HMGB1 regulates autophagy. Journal of Experimental Medicine, 2010, 207, i27-i27.                                                                         | 4.2 | 0         |
| 205 | Mutually exclusive redox forms of HMGB1 promote cell recruitment or proinflammatory cytokine release Journal of General Physiology, 2012, 140, i3-i3                | 0.9 | 0         |