
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4947097/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Generation and characterization of androgen receptor knockout (ARKO) mice: An <i>in vivo</i> model for the study of androgen functions in selective tissues. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 13498-13503.	7.1	591
2	Promotion of Bladder Cancer Development and Progression by Androgen Receptor Signals. Journal of the National Cancer Institute, 2007, 99, 558-568.	6.3	353
3	Subfertility and defective folliculogenesis in female mice lacking androgen receptor. Proceedings of the United States of America, 2004, 101, 11209-11214.	7.1	270
4	Androgen Receptor: An Overview. Critical Reviews in Eukaryotic Gene Expression, 1995, 5, 97-125.	0.9	260
5	Androgen receptor is a tumor suppressor and proliferator in prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 12182-12187.	7.1	226
6	Androgen Receptor Is a New Potential Therapeutic Target for the Treatment of Hepatocellular Carcinoma. Gastroenterology, 2008, 135, 947-955.e5.	1.3	213
7	Expression of androgen and oestrogen receptors and its prognostic significance in urothelial neoplasm of the urinary bladder. BJU International, 2012, 109, 1716-1726.	2.5	187
8	Increased prostate cell proliferation and loss of cell differentiation in mice lacking prostate epithelial androgen receptor. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12679-12684.	7.1	182
9	Androgen Receptor Promotes Hepatitis B Virus–Induced Hepatocarcinogenesis Through Modulation of Hepatitis B Virus RNA Transcription. Science Translational Medicine, 2010, 2, 32ra35.	12.4	171
10	LncRNA-p21 alters the antiandrogen enzalutamide-induced prostate cancer neuroendocrine differentiation via modulating the EZH2/STAT3 signaling. Nature Communications, 2019, 10, 2571.	12.8	153
11	ASC-J9 ameliorates spinal and bulbar muscular atrophy phenotype via degradation of androgen receptor. Nature Medicine, 2007, 13, 348-353.	30.7	147
12	Vitamin E succinate inhibits the function of androgen receptor and the expression of prostate-specific antigen in prostate cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 7408-7413.	7.1	142
13	Abnormal Mammary Gland Development and Growth Retardation in Female Mice and MCF7 Breast Cancer Cells Lacking Androgen Receptor. Journal of Experimental Medicine, 2003, 198, 1899-1908.	8.5	138
14	Targeting the stromal androgen receptor in primary prostate tumors at earlier stages. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 12188-12193.	7.1	134
15	Hepatic androgen receptor suppresses hepatocellular carcinoma metastasis through modulation of cell migration and anoikis. Hepatology, 2012, 56, 176-185.	7.3	130
16	Androgen receptor roles in hepatocellular carcinoma, fatty liver, cirrhosis and hepatitis. Endocrine-Related Cancer, 2014, 21, R165-R182.	3.1	130
17	Oligozoospermia with normal fertility in male mice lacking the androgen receptor in testis peritubular myoid cells. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17718-17723.	7.1	126
18	Retinoblastoma, a Tumor Suppressor, Is a Coactivator for the Androgen Receptor in Human Prostate Cancer DU145 Cells. Biochemical and Biophysical Research Communications, 1998, 248, 361-367.	2.1	123

#	Article	IF	CITATIONS
19	ASC-J9 Suppresses Castration-Resistant Prostate Cancer Growth through Degradation of Full-length and Splice Variant Androgen Receptors. Neoplasia, 2012, 14, 74-IN12.	5.3	123
20	Androgen Receptor (AR) Physiological Roles in Male and Female Reproductive Systems: Lessons Learned from AR-Knockout Mice Lacking AR in Selective Cells1. Biology of Reproduction, 2013, 89, 21.	2.7	114
21	Vitamin E succinate inhibits human prostate cancer cell growth via modulating cell cycle regulatory machinery. Biochemical and Biophysical Research Communications, 2003, 300, 357-363.	2.1	106
22	Differential Androgen Deprivation Therapies with Anti-androgens Casodex/Bicalutamide or MDV3100/Enzalutamide versus Anti-androgen Receptor ASC-J9® Lead to Promotion versus Suppression of Prostate Cancer Metastasis. Journal of Biological Chemistry, 2013, 288, 19359-19369.	3.4	106
23	Preclinical Study using Malat1 Small Interfering RNA or Androgen Receptor Splicing Variant 7 Degradation Enhancer ASC-J9 ® to Suppress Enzalutamide-resistant Prostate Cancer Progression. European Urology, 2017, 72, 835-844.	1.9	103
24	Isolation of Ku70-binding proteins (KUBs). Nucleic Acids Research, 1999, 27, 2165-2174.	14.5	97
25	Estrogen receptor β promotes renal cell carcinoma progression via regulating LncRNA HOTAIR-miR-138/200c/204/217 associated CeRNA network. Oncogene, 2018, 37, 5037-5053.	5.9	93
26	New therapy targeting differential androgen receptor signaling in prostate cancer stem/progenitor vs. non-stem/progenitor cells. Journal of Molecular Cell Biology, 2013, 5, 14-26.	3.3	91
27	Estrogen receptor \hat{I}^2 promotes the vasculogenic mimicry (VM) and cell invasion via altering the lncRNA-MALAT1/miR-145-5p/NEDD9 signals in lung cancer. Oncogene, 2019, 38, 1225-1238.	5.9	89
28	Tocopherol-Associated Protein Suppresses Prostate Cancer Cell Growth by Inhibition of the Phosphoinositide 3-Kinase Pathway. Cancer Research, 2005, 65, 9807-9816.	0.9	88
29	Tumor microenvironment B cells increase bladder cancer metastasis <i>via</i> modulation of the IL-8/androgen receptor (AR)/MMPs signals. Oncotarget, 2015, 6, 26065-26078.	1.8	83
30	ASC-J9 Suppresses Renal Cell Carcinoma Progression by Targeting an Androgen Receptor–Dependent HIF21±/VEGF Signaling Pathway. Cancer Research, 2014, 74, 4420-4430.	0.9	77
31	Cisplatin enhances NK cells immunotherapy efficacy to suppress HCC progression via altering the androgen receptor (AR)-ULBP2 signals. Cancer Letters, 2016, 373, 45-56.	7.2	75
32	Infiltrating T cells promote prostate cancer metastasis via modulation of FGF11→miRNAâ€541→androgen receptor (AR)→MMP9 signaling. Molecular Oncology, 2015, 9, 44-57.	4.6	74
33	New Therapeutic Approach to Suppress Castration-Resistant Prostate Cancer Using ASC-J9 via Targeting Androgen Receptor in Selective Prostate Cells. American Journal of Pathology, 2013, 182, 460-473.	3.8	73
34	Infiltrating mast cells enhance prostate cancer invasion <i>via</i> altering LncRNA-HOTAIR/PRC2-androgen receptor (AR)-MMP9 signals and increased stem/progenitor cell population. Oncotarget, 2015, 6, 14179-14190.	1.8	72
35	Recruited mast cells in the tumor microenvironment enhance bladder cancer metastasis via modulation of ERβ/CCL2/CCR2 EMT/MMP9 signals. Oncotarget, 2016, 7, 7842-7855.	1.8	72
36	Hydroxyflutamide may not always be a pure antiandrogen. Lancet, The, 1997, 349, 852-853.	13.7	70

#	Article	IF	CITATIONS
37	Suppression of ERβ signaling via ERβ knockout or antagonist protects against bladder cancer development. Carcinogenesis, 2014, 35, 651-661.	2.8	70
38	Androgen Receptor (AR) Pathophysiological Roles in Androgen Related Diseases in Skin, Metabolism Syndrome, Bone/Muscle and Neuron/Immune Systems: Lessons Learned from Mice Lacking AR in Specific Cells. Nuclear Receptor Signaling, 2013, 11, nrs.11001.	1.0	69
39	Differential Induction of Androgen Receptor Transactivation by Different Androgen Receptor Coactivators in Human Prostate Cancer DU145 Cells. Endocrine, 1999, 11, 195-202.	2.2	68
40	RRR-α-tocopheryl succinate inhibits human prostate cancer cell invasiveness. Oncogene, 2004, 23, 3080-3088.	5.9	67
41	Defects of Prostate Development and Reproductive System in the Estrogen Receptor-α Null Male Mice. Endocrinology, 2009, 150, 251-259.	2.8	67
42	ERβ-Mediated Alteration of circATP2B1 and miR-204-3p Signaling Promotes Invasion of Clear Cell Renal Cell Carcinoma. Cancer Research, 2018, 78, 2550-2563.	0.9	66
43	Altered prostate epithelial development in mice lacking the androgen receptor in stromal fibroblasts. Prostate, 2012, 72, 437-449.	2.3	65
44	The evolving understanding of microRNA in bladder cancer. Urologic Oncology: Seminars and Original Investigations, 2014, 32, 41.e31-41.e40.	1.6	65
45	Estrogen receptor α in cancer-associated fibroblasts suppresses prostate cancer invasion via modulation of thrombospondin 2 and matrix metalloproteinase 3. Carcinogenesis, 2014, 35, 1301-1309.	2.8	63
46	Estrogen Receptor Alpha Prevents Bladder Cancer Development via INPP4B inhibited Akt Pathway <i>in vitro</i> and <i>in vivo</i> . Oncotarget, 2014, 5, 7917-7935.	1.8	63
47	Androgen Receptor (AR) NH2- and COOH-Terminal Interactions Result in the Differential Influences on the AR-Mediated Transactivation and Cell Growth. Molecular Endocrinology, 2005, 19, 350-361.	3.7	62
48	Androgen receptor in human prostate cancer-associated fibroblasts promotes prostate cancer epithelial cell growth and invasion. Medical Oncology, 2013, 30, 674.	2.5	62
49	Cryptotanshinone suppresses androgen receptor-mediated growth in androgen dependent and castration resistant prostate cancer cells. Cancer Letters, 2012, 316, 11-22.	7.2	61
50	Androgen Receptor Roles in Insulin Resistance and Obesity in Males: The Linkage of Androgen-Deprivation Therapy to Metabolic Syndrome. Diabetes, 2014, 63, 3180-3188.	0.6	61
51	Androgen receptorâ€regulated circ <scp>FNTA</scp> activates <scp>KRAS</scp> signaling to promote bladder cancer invasion. EMBO Reports, 2020, 21, e48467.	4.5	60
52	Role of oestrogen receptors in bladder cancer development. Nature Reviews Urology, 2013, 10, 317-326.	3.8	58
53	CCDC62/ERAP75 functions as a coactivator to enhance estrogen receptor beta-mediated transactivation and target gene expression in prostate cancer cells. Carcinogenesis, 2009, 30, 841-850.	2.8	56
54	Altered prostate epithelial development and IGFâ€1 signal in mice lacking the androgen receptor in stromal smooth muscle cells. Prostate, 2011, 71, 517-524.	2.3	55

#	Article	IF	CITATIONS
55	Suppressed Prostate Epithelial Development with Impaired Branching Morphogenesis in Mice Lacking Stromal Fibromuscular Androgen Receptor. Molecular Endocrinology, 2012, 26, 52-66.	3.7	55
56	The miR-92a-2-5p in exosomes from macrophages increases liver cancer cells invasion via altering the AR/PHLPP/p-AKT/l²-catenin signaling. Cell Death and Differentiation, 2020, 27, 3258-3272.	11.2	54
57	Targeting Androgen Receptor (AR)→IL12A Signal Enhances Efficacy of Sorafenib plus NK Cells Immunotherapy to Better Suppress HCC Progression. Molecular Cancer Therapeutics, 2016, 15, 731-742.	4.1	49
58	Androgen Receptor Enhances Kidney Stone-CaOx Crystal Formation via Modulation of Oxalate Biosynthesis & Oxidative Stress. Molecular Endocrinology, 2014, 28, 1291-1303.	3.7	48
59	The Expression and Evaluation of Androgen Receptor in Human Renal Cell Carcinoma. Urology, 2014, 83, 510.e19-510.e24.	1.0	47
60	Antiâ€androgen enzalutamide enhances prostate cancer neuroendocrine (NE) differentiation <i>via</i> altering the infiltrated mast cellsÂ→Âandrogen receptor (AR)Â→ÂmiRNA32 signals. Molecular Oncology, 2015, 9, 1241-1251.	4.6	47
61	Estrogen receptor α in cancer associated fibroblasts suppresses prostate cancer invasion via reducing CCL5, IL6 and macrophage infiltration in the tumor microenvironment. Molecular Cancer, 2016, 15, 7.	19.2	47
62	Androgen receptor (AR)/miR-520f-3p/SOX9 signaling is involved in altering hepatocellular carcinoma (HCC) cell sensitivity to the Sorafenib therapy under hypoxia via increasing cancer stem cells phenotype. Cancer Letters, 2019, 444, 175-187.	7.2	46
63	Infiltrated pre-adipocytes increase prostate cancer metastasis via modulation of the miR-301a/androgen receptor (AR)/TGF-β1/Smad/MMP9 signals. Oncotarget, 2015, 6, 12326-12339.	1.8	45
64	Generation and characterization of a complete null estrogen receptor α mouse using Cre/LoxP technology. Molecular and Cellular Biochemistry, 2009, 321, 145-153.	3.1	44
65	BM-MSCs promote prostate cancer progression via the conversion of normal fibroblasts to cancer-associated fibroblasts. International Journal of Oncology, 2015, 47, 719-727.	3.3	44
66	The MAO inhibitors phenelzine and clorgyline revert enzalutamide resistance in castration resistant prostate cancer. Nature Communications, 2020, 11, 2689.	12.8	41
67	Infiltrating neutrophils increase bladder cancer cell invasion <i>via</i> modulation of androgen receptor (AR)/MMP13 signals. Oncotarget, 2015, 6, 43081-43089.	1.8	41
68	Targeting fatty acid synthase with ASC-J9 suppresses proliferation and invasion of prostate cancer cells. Molecular Carcinogenesis, 2016, 55, 2278-2290.	2.7	39
69	Targeting Thymic Epithelia AR Enhances T-Cell Reconstitution and Bone Marrow Transplant Grafting Efficacy. Molecular Endocrinology, 2013, 27, 25-37.	3.7	38
70	Targeting Stromal Androgen Receptor Suppresses Prolactin-Driven Benign Prostatic Hyperplasia (BPH). Molecular Endocrinology, 2013, 27, 1617-1631.	3.7	37
71	Infiltrating neutrophils promote renal cell carcinoma progression via VEGFa/HIF2α and estrogen receptor l² signals. Oncotarget, 2015, 6, 19290-19304.	1.8	37
72	Loss of the androgen receptor suppresses intrarenal calcium oxalate crystals deposition via altering macrophage recruitment/M2 polarization with change of the miR-185-5p/CSF-1 signals. Cell Death and Disease, 2019, 10, 275.	6.3	36

#	Article	IF	CITATIONS
73	ADT with antiandrogens in prostate cancer induces adverse effect of increasing resistance, neuroendocrine differentiation and tumor metastasis. Cancer Letters, 2018, 439, 47-55.	7.2	35
74	Antiandrogen Therapy with Hydroxyflutamide or Androgen Receptor Degradation Enhancer ASC-J9 Enhances BCG Efficacy to Better Suppress Bladder Cancer Progression. Molecular Cancer Therapeutics, 2015, 14, 2586-2594.	4.1	34
75	Natural killer cells suppress enzalutamide resistance and cell invasion in the castration resistant prostate cancer via targeting the androgen receptor splicing variant 7 (ARv7). Cancer Letters, 2017, 398, 62-69.	7.2	34
76	Androgen receptor (AR) degradation enhancer ASC-J9 \hat{A}^{\otimes} in an FDA-approved formulated solution suppresses castration resistant prostate cancer cell growth. Cancer Letters, 2018, 417, 182-191.	7.2	34
77	Targeting androgen receptor versus targeting androgens to suppress castration resistant prostate cancer. Cancer Letters, 2017, 397, 133-143.	7.2	33
78	TR4 nuclear receptor promotes clear cell renal cell carcinoma (ccRCC) vasculogenic mimicry (VM) formation and metastasis via altering the miR490-3p/vimentin signals. Oncogene, 2018, 37, 5901-5912.	5.9	33
79	Estrogen receptor α promotes lung cancer cell invasion via increase of and crossâ€ŧalk with infiltrated macrophages through the CCL2/CCR2/MMP9 and CXCL12/CXCR4 signaling pathways. Molecular Oncology, 2020, 14, 1779-1799.	4.6	33
80	Targeting the estrogen receptor alpha (ERα)-mediated circ-SMG1.72/miR-141-3p/Gelsolin signaling to better suppress the HCC cell invasion. Oncogene, 2020, 39, 2493-2508.	5.9	33
81	Differential retention of α-vitamin E is correlated with its transporter gene expression and growth inhibition efficacy in prostate cancer cells. Prostate, 2007, 67, 463-471.	2.3	32
82	Loss of epithelial oestrogen receptor α inhibits oestrogenâ€stimulated prostate proliferation and squamous metaplasia via <i>in vivo</i> tissue selective knockout models. Journal of Pathology, 2012, 226, 17-27.	4.5	32
83	Targeting androgen receptor (AR) with antiandrogen Enzalutamide increases prostate cancer cell invasion yet decreases bladder cancer cell invasion via differentially altering the AR/circRNA-ARC1/miR-125b-2-3p or miR-4736/PPARÎ ³ /MMP-9 signals. Cell Death and Differentiation, 2021, 28, 2145-2159.	11.2	32
84	Estrogen receptors orchestrate cell growth and differentiation to facilitate liver regeneration. Theranostics, 2018, 8, 2672-2682.	10.0	31
85	Abnormal Mitochondrial Function and Impaired Granulosa Cell Differentiation in Androgen Receptor Knockout Mice. International Journal of Molecular Sciences, 2015, 16, 9831-9849.	4.1	30
86	Recruited T cells promote the bladder cancer metastasis via up-regulation of the estrogen receptor β/IL-1/c-MET signals. Cancer Letters, 2018, 430, 215-223.	7.2	29
87	The expression and actions of androgen receptor in upper urinary tract urothelial carcinoma (UUTUC) tissues and the primary cultured cells. Endocrine, 2013, 43, 191-199.	2.3	28
88	Androgen-deprivation therapy with enzalutamide enhances prostate cancer metastasis via decreasing the EPHB6 suppressor expression. Cancer Letters, 2017, 408, 155-163.	7.2	26
89	The Protective Roles of Estrogen Receptor <i>β</i> in Renal Calcium Oxalate Crystal Formation <i>via</i> Reducing the Liver Oxalate Biosynthesis and Renal Oxidative Stress-Mediated Cell Injury. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-17.	4.0	26
90	ASC-J9®, and not Casodex or Enzalutamide, suppresses prostate cancer stem/progenitor cell invasion via altering the EZH2-STAT3 signals. Cancer Letters, 2016, 376, 377-386.	7.2	25

#	Article	IF	CITATIONS
91	Multiâ€omics consensus ensemble refines the classification of muscleâ€invasive bladder cancer with stratified prognosis, tumour microenvironment and distinct sensitivity to frontline therapies. Clinical and Translational Medicine, 2021, 11, e601.	4.0	25
92	Estrogen receptor \hat{I}^2 promotes bladder cancer growth and invasion via alteration of miR-92a/DAB2IP signals. Experimental and Molecular Medicine, 2018, 50, 1-11.	7.7	24
93	Infiltrating neutrophils promote renal cell carcinoma (RCC) proliferation via modulating androgen receptor (AR) → c-Myc signals. Cancer Letters, 2015, 368, 71-78.	7.2	23
94	Androgen receptor promotes renal cell carcinoma (RCC) vasculogenic mimicry (VM) via altering TWIST1 nonsense-mediated decay through IncRNA-TANAR. Oncogene, 2021, 40, 1674-1689.	5.9	23
95	The selective inhibitory effect of a synthetic tanshinone derivative on prostate cancer cells. Prostate, 2012, 72, 803-816.	2.3	22
96	Fibroblast ERα promotes bladder cancer invasion via increasing the CCL1 and IL-6 signals in the tumor microenvironment. American Journal of Cancer Research, 2015, 5, 1146-57.	1.4	22
97	Infiltrating T Cells Promote Bladder Cancer Progression via Increasing IL1→Androgen Receptor→HIF1α→VEGFa Signals. Molecular Cancer Therapeutics, 2016, 15, 1943-1951.	4.1	21
98	Targeting newly identified ERβ/TGFâ€Î²1/SMAD3 signals with the FDAâ€approved antiâ€estrogen Faslodex or an ERβ selective antagonist in renal cell carcinoma. Molecular Oncology, 2018, 12, 2055-2071.	4.6	21
99	Preclinical study using androgen receptor (AR) degradation enhancer to increase radiotherapy efficacy via targeting radiation-increased AR to better suppress prostate cancer progression. EBioMedicine, 2019, 40, 504-516.	6.1	21
100	Targeting the androgen receptor (AR) with AR degradation enhancer ASC-J9® led to increase docetaxel sensitivity via suppressing the p21 expression. Cancer Letters, 2019, 444, 35-44.	7.2	21
101	Targeting the ERβ/Angiopoietin-2/Tie-2 signaling-mediated angiogenesis with the FDA-approved anti-estrogen Faslodex to increase the Sunitinib sensitivity in RCC. Cell Death and Disease, 2020, 11, 367.	6.3	21
102	Targeting the radiation-induced TR4 nuclear receptor-mediated QKI/circZEB1/miR-141-3p/ZEB1 signaling increases prostate cancer radiosensitivity. Cancer Letters, 2020, 495, 100-111.	7.2	20
103	Sunitinib increases the cancer stem cells and vasculogenic mimicry formation via modulating the IncRNA-ECVSR/ERβ/Hif2-α signaling. Cancer Letters, 2022, 524, 15-28.	7.2	20
104	The Therapeutic and Preventive Effect of RRR-α-Vitamin E Succinate on Prostate Cancer via Induction of Insulin-Like Growth Factor Binding Protein-3. Clinical Cancer Research, 2007, 13, 2271-2280.	7.0	19
105	The Wedelolactone Derivative Inhibits Estrogen Receptor-Mediated Breast, Endometrial, and Ovarian Cancer Cells Growth. BioMed Research International, 2014, 2014, 1-11.	1.9	19
106	Determination of androgen receptor degradation enhancer ASC-J9® in mouse sera and organs with liquid chromatography tandem mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 2014, 88, 117-122.	2.8	19
107	Quantitative volumetric imaging of normal, neoplastic and hyperplastic mouse prostate using ultrasound. BMC Urology, 2015, 15, 97.	1.4	18
108	ASC-J9® increases the bladder cancer chemotherapy efficacy via altering the androgen receptor (AR) and NF-κB survival signals. Journal of Experimental and Clinical Cancer Research, 2019, 38, 275.	8.6	18

#	Article	IF	CITATIONS
109	Estrogen–Estrogen Receptor α Signaling Facilitates Bilirubin Metabolism in Regenerating Liver Through Regulating Cytochrome P450 2A6 Expression. Cell Transplantation, 2017, 26, 1822-1829.	2.5	17
110	RRR-α-Vitamin E Succinate Potentiates the Antitumor Effect of Calcitriol in Prostate Cancer without Overt Side Effects. Clinical Cancer Research, 2009, 15, 190-200.	7.0	16
111	ERAP75 functions as a coactivator to enhance estrogen receptor \hat{I}_{\pm} transactivation in prostate stromal cells. Prostate, 2008, 68, 1273-1282.	2.3	15
112	Distinct Function of Estrogen Receptor α in Smooth Muscle and Fibroblast Cells in Prostate Development. Molecular Endocrinology, 2013, 27, 38-49.	3.7	15
113	Targeting estrogen/estrogen receptor alpha enhances Bacillus Calmette-Guérin efficacy in bladder cancer. Oncotarget, 2016, 7, 27325-27335.	1.8	15
114	R-2HG downregulates ERα to inhibit cholangiocarcinoma via the FTO/m6A-methylated ERα/miR16-5p/YAP1 signal pathway. Molecular Therapy - Oncolytics, 2021, 23, 65-81.	4.4	14
115	Reduced prostate branching morphogenesis in stromal fibroblast, but not in epithelial, estrogen receptor α knockout mice. Asian Journal of Andrology, 2012, 14, 546-555.	1.6	14
116	Infiltrating T cells promote renal cell carcinoma (RCC) progression <i>via</i> altering the estrogen receptor I²-DAB2IP signals. Oncotarget, 2015, 6, 44346-44359.	1.8	14
117	Estrogen and G protein-coupled estrogen receptor accelerate the progression of benign prostatic hyperplasia by inducing prostatic fibrosis. Cell Death and Disease, 2022, 13, .	6.3	14
118	<i>In vitro</i> and <i>In vivo</i> Anticancer Effects of the Novel Vitamin E Ether Analogue <i>RRR</i> -α-Tocopheryloxybutyl Sulfonic Acid in Prostate Cancer. Clinical Cancer Research, 2009, 15, 898-906.	7.0	11
119	Preclinical studies using cisplatin/carboplatin to restore the Enzalutamide sensitivity via degrading the androgen receptor splicing variant 7 (ARv7) to further suppress Enzalutamide resistant prostate cancer. Cell Death and Disease, 2020, 11, 942.	6.3	10
120	ASC-J9® suppresses prostate cancer cell proliferation and invasion via altering the ATF3-PTK2 signaling. Journal of Experimental and Clinical Cancer Research, 2021, 40, 3.	8.6	10
121	Estrogen receptors in prostate development and cancer. American Journal of Clinical and Experimental Urology, 2014, 2, 161-8.	0.4	10
122	Cell Culture Block Array for Immunocytochemical Study of Protein Expression in Cultured Cells. Applied Immunohistochemistry and Molecular Morphology, 2005, 13, 85-90.	1.2	8
123	The Roles of αâ€Vitamin E and Its Analogues in Prostate Cancer. Vitamins and Hormones, 2007, 76, 493-518.	1.7	8
124	Tissue-Specific Knockout of Androgen Receptor in Mice. Methods in Molecular Biology, 2011, 776, 275-293.	0.9	8
125	?-Vitamin E derivative, RRR-?-tocopheryloxybutyric acid inhibits the proliferation of prostate cancer cells. Asian Journal of Andrology, 2007, 9, 31-39.	1.6	7
126	Expression of a-Tocopherol-Associated protein (TAP) is associated with clinical outcome in breast cancer patients. BMC Clinical Pathology, 2015, 15, 21.	1.8	6

#	Article	IF	CITATIONS
127	Proteomic analysis of urethral protein expression in an estrogen receptor α-deficient murine model of stress urinary incontinence. World Journal of Urology, 2015, 33, 1635-1643.	2.2	6
128	New therapy with ASC-J9® to suppress the prostatitis <i>via</i> altering the cytokine CCL2 signals. Oncotarget, 2016, 7, 66769-66775.	1.8	6
129	Targeting circDGKD Intercepts TKI's Effects on Up-Regulation of Estrogen Receptor β and Vasculogenic Mimicry in Renal Cell Carcinoma. Cancers, 2022, 14, 1639.	3.7	5
130	Estrogen receptor beta increases clear cell renal cell carcinoma stem cell phenotype via altering the circPHACTR4/miRâ€34bâ€5p/câ€Myc signaling. FASEB Journal, 2022, 36, e22163.	0.5	4
131	Urethral Dysfunction in Female Mice with Estrogen Receptor Î ² Deficiency. PLoS ONE, 2014, 9, e109058.	2.5	3
132	Preclinical studies show using enzalutamide is less effective in docetaxel-pretreated than in docetaxel-naÃ-ve prostate cancer cells. Aging, 2020, 12, 17694-17712.	3.1	2
133	ROLES OF VITAMIN E IN PROSTATE AND PROSTATE CANCER. , 2005, , 263-276.		1