Sarah E Ewald

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4946409/publications.pdf

Version: 2024-02-01

687363 888059 2,147 17 13 17 citations h-index g-index papers 22 22 22 3626 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The ectodomain of Toll-like receptor 9 is cleaved to generate a functional receptor. Nature, 2008, 456, 658-662.	27.8	538
2	Nucleic Acid Recognition by the Innate Immune System. Annual Review of Immunology, 2011, 29, 185-214.	21.8	493
3	Nucleic acid recognition by Toll-like receptors is coupled to stepwise processing by cathepsins and asparagine endopeptidase. Journal of Experimental Medicine, 2011, 208, 643-651.	8.5	276
4	NLRP1 Is an Inflammasome Sensor for Toxoplasma gondii. Infection and Immunity, 2014, 82, 460-468.	2.2	215
5	Toxoplasma Effector MAF1 Mediates Recruitment of Host Mitochondria and Impacts the Host Response. PLoS Biology, 2014, 12, e1001845.	5.6	148
6	Immunoregulatory Role of NK Cells in Tissue Inflammation and Regeneration. Frontiers in Immunology, 2017, 8, 301.	4.8	114
7	Transmembrane Mutations in Toll-like Receptor 9 Bypass the Requirement for Ectodomain Proteolysis and Induce Fatal Inflammation. Immunity, 2011, 35, 721-732.	14.3	98
8	Nucleic acid sensing Toll-like receptors in autoimmunity. Current Opinion in Immunology, 2011, 23, 3-9.	5 . 5	65
9	The molecular biology and immune control of chronic Toxoplasma gondii infection. Journal of Clinical Investigation, 2020, 130, 3370-3380.	8.2	49
10	Toxoplasma gondii infection triggers chronic cachexia and sustained commensal dysbiosis in mice. PLoS ONE, 2018, 13, e0204895.	2.5	41
11	Disease Tolerance in Toxoplasma Infection. Frontiers in Cellular and Infection Microbiology, 2019, 9, 185.	3.9	29
12	IL-1R Regulates Disease Tolerance and Cachexia in <i>Toxoplasma gondii</i> Infection. Journal of Immunology, 2020, 204, 3329-3338.	0.8	24
13	The Myeloid Receptor PILR \hat{I}^2 Mediates the Balance of Inflammatory Responses through Regulation of IL-27 Production. PLoS ONE, 2012, 7, e31680.	2.5	18
14	Automated Spatially Targeted Optical Microproteomics (autoSTOMP) to Determine Protein Complexity of Subcellular Structures. Analytical Chemistry, 2020, 92, 2005-2010.	6.5	13
15	T. gondii infection induces IL-1R dependent chronic cachexia and perivascular fibrosis in the liver and skeletal muscle. Scientific Reports, 2020, 10, 15724.	3.3	10
16	Phosphorylation of <i>Toxoplasma gondii</i> Secreted Proteins during Acute and Chronic Stages of Infection. MSphere, 2020, 5, .	2.9	9
17	Automated Spatially Targeted Optical Microproteomics Investigates Inflammatory Lesions <i>In Situ</i> . Journal of Proteome Research, 2021, 20, 4543-4552.	3.7	4