List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4945876/publications.pdf Version: 2024-02-01

MAY MALIDED

#	Article	IF	CITATIONS
1	Emerging solutions to the water challenges of an urbanizing world. Science, 2016, 352, 928-933.	12.6	534
2	Treatment processes for source-separated urine. Water Research, 2006, 40, 3151-3166.	11.3	426
3	Nutrients in urine: energetic aspects of removal and recovery. Water Science and Technology, 2003, 48, 37-46.	2.5	285
4	Source Separation: Will We See a Paradigm Shift in Wastewater Handling?. Environmental Science & Technology, 2009, 43, 6121-6125.	10.0	244
5	Elimination of Î ² -blockers in sewage treatment plants. Water Research, 2007, 41, 1614-1622.	11.3	228
6	Struvite precipitation thermodynamics in source-separated urine. Water Research, 2007, 41, 977-984.	11.3	193
7	The behaviour of pharmaceuticals and heavy metals during struvite precipitation in urine. Water Research, 2007, 41, 1859-1868.	11.3	180
8	Struvite precipitation from urine – Influencing factors on particle size. Water Research, 2010, 44, 2038-2046.	11.3	169
9	The Potential of Knowing More: A Review of Data-Driven Urban Water Management. Environmental Science & Technology, 2017, 51, 2538-2553.	10.0	166
10	A guideline for simulation studies of wastewater treatment plants. Water Science and Technology, 2004, 50, 131-138.	2.5	141
11	Neural Correlates of Sevoflurane-induced Unconsciousness Identified by Simultaneous Functional Magnetic Resonance Imaging and Electroencephalography. Anesthesiology, 2016, 125, 861-872.	2.5	118
12	Intracellular carbon flow in phosphorus accumulating organisms from activated sludge systems. Water Research, 1997, 31, 907-917.	11.3	110
13	Review of synthetic human faeces and faecal sludge for sanitation and wastewater research. Water Research, 2018, 132, 222-240.	11.3	103
14	Kinetics of biologically induced phosphorus precipitation in waste-water treatment. Water Research, 1999, 33, 484-493.	11.3	102
15	To connect or not to connect? Modelling the optimal degree of centralisation for wastewater infrastructures. Water Research, 2015, 84, 218-231.	11.3	92
16	Peer Reviewed: Re-engineering the toilet for sustainable wastewater management. Environmental Science & Technology, 2001, 35, 192A-197A.	10.0	91
17	Monitoring the Removal Efficiency of Pharmaceuticals and Hormones in Different Treatment Processes of Source-Separated Urine with Bioassays. Environmental Science & Technology, 2006, 40, 5095-5101.	10.0	88
18	Strategic rehabilitation planning of piped water networks using multi-criteria decision analysis. Water Research, 2014, 49, 124-143.	11.3	84

#	Article	IF	CITATIONS
19	A Research Agenda for the Future of Urban Water Management: Exploring the Potential of Nongrid, Small-Grid, and Hybrid Solutions. Environmental Science & Technology, 2020, 54, 5312-5322.	10.0	73
20	Climate change and the willingness to pay to reduce ecological and health risks from wastewater flooding in urban centers and the environment. Ecological Economics, 2014, 98, 1-10.	5.7	72
21	Structured decision-making for sustainable water infrastructure planning and four future scenarios. EURO Journal on Decision Processes, 2015, 3, 107-140.	2.7	70
22	Local strategic planning processes and sustainability transitions in infrastructure sectors. Environmental Policy and Governance, 2010, 20, 258-269.	3.7	67
23	Cost-Benefit Analysis of the Swiss National Policy on Reducing Micropollutants in Treated Wastewater. Environmental Science & Technology, 2014, 48, 12500-12508.	10.0	60
24	Not all SuDS are created equal: Impact of different approaches on combined sewer overflows. Water Research, 2021, 191, 116780.	11.3	56
25	Specific net present value: An improved method for assessing modularisation costs in water services with growing demand. Water Research, 2009, 43, 2121-2130.	11.3	54
26	Network condition simulator for benchmarking sewer deterioration models. Water Research, 2011, 45, 4983-4994.	11.3	54
27	Nutrient cycles and resource management: implications for the choice of wastewater treatment technology. Water Science and Technology, 2007, 56, 229-237.	2.5	51
28	SCREENING TEST BATTERY FOR PHARMACEUTICALS IN URINE AND WASTEWATER. Environmental Toxicology and Chemistry, 2005, 24, 750.	4.3	49
29	Decentralised wastewater treatment technologies from a national perspective: at what cost are they competitive?. Water Science and Technology: Water Supply, 2005, 5, 145-154.	2.1	43
30	From waste treatment to integrated resource management. Water Science and Technology, 2003, 48, 1-9.	2.5	42
31	Extension of pipe failure models to consider the absence of data from replaced pipes. Water Research, 2013, 47, 3696-3705.	11.3	39
32	Economies of density for on-site waste water treatment. Water Research, 2016, 101, 476-489.	11.3	37
33	Charting a Path for Innovative Toilet Technology Using Multicriteria Decision Analysis. Environmental Science & Technology, 2008, 42, 1855-1862.	10.0	36
34	The exploratory analysis of trade-offs in strategic planning: Lessons from Regional Infrastructure Foresight. Technological Forecasting and Social Change, 2009, 76, 1150-1162.	11.6	36
35	Combining expert knowledge and local data for improved service life modeling of water supply networks. Environmental Modelling and Software, 2013, 42, 1-16.	4.5	36
36	Seasonal and Spatial Variability in Lake Michigan Sediment Small-Subunit rRNA Concentrations. Applied and Environmental Microbiology, 2001, 67, 3908-3922.	3.1	35

#	Article	IF	CITATIONS
37	Reconciling cities with nature: Identifying local Blue-Green Infrastructure interventions for regional biodiversity enhancement. Journal of Environmental Management, 2022, 316, 115254.	7.8	34
38	Sewer deterioration modeling with condition data lacking historical records. Water Research, 2013, 47, 6762-6779.	11.3	31
39	Generation of sanitation system options for urban planning considering novel technologies. Water Research, 2018, 145, 259-278.	11.3	30
40	Factors affecting economies of scale in combined sewer systems. Water Science and Technology, 2010, 62, 36-41.	2.5	28
41	Monitoring of microbial phosphorus release in batch experiments using electric conductivity. Water Research, 1995, 29, 2613-2617.	11.3	27
42	A compatibility-based procedure designed to generate potential sanitation system alternatives. Journal of Environmental Management, 2012, 104, 51-61.	7.8	26
43	Passive samplers to quantify micropollutants in sewer overflows: accumulation behaviour and field validation for short pollution events. Water Research, 2019, 160, 350-360.	11.3	26
44	Screening European market potentials for small modular wastewater treatment systems – an inroad to sustainability transitions in urban water management?. Land Use Policy, 2018, 78, 711-725.	5.6	25
45	Beyond signal quality: The value of unmaintained pH, dissolved oxygen, and oxidation-reduction potential sensors for remote performance monitoring of on-site sequencing batch reactors. Water Research, 2019, 161, 639-651.	11.3	25
46	Importance of anthropogenic climate impact, sampling error and urban development in sewer system design. Water Research, 2015, 73, 78-97.	11.3	23
47	The cost of hybrid waste water systems: A systematic framework for specifying minimum cost-connection rates. Water Research, 2016, 103, 472-484.	11.3	23
48	Comparing multi-criteria decision analysis and integrated assessment to support long-term water supply planning. PLoS ONE, 2017, 12, e0176663.	2.5	23
49	Quantifying costs and lengths of urban drainage systems with a simple static sewer infrastructure model. Urban Water Journal, 2013, 10, 268-280.	2.1	22
50	Prediction of the performance of enhanced biological phosphorus removal plants. Water Science and Technology, 1994, 30, 333-343.	2.5	21
51	Moving-bed biological treatment (MBBT) of municipal wastewater: denitrification. Water Science and Technology, 2001, 43, 337-344.	2.5	18
52	Developing sanitation planning options: A tool for systematic consideration of novel technologies and systems. Journal of Environmental Management, 2020, 271, 111004.	7.8	18
53	Nutrients in urine: energetic aspects of removal and recovery. Water Science and Technology, 2003, 48, 37-46.	2.5	17
54	Moving Targets, Long-Lived Infrastructure, and Increasing Needs for Integration and Adaptation in Water Management: An Illustration from Switzerland. Environmental Science & Technology, 2012, 46, 112-118.	10.0	16

#	Article	IF	CITATIONS
55	Integrating uncertainty of preferences and predictions in decision models: An application to regional wastewater planning. Journal of Environmental Management, 2019, 252, 109652.	7.8	16
56	Benchmarking Soft Sensors for Remote Monitoring of On-Site Wastewater Treatment Plants. Environmental Science & Technology, 2020, 54, 10840-10849.	10.0	16
57	Formulation of the CBC-Model for Modelling the Contaminants and Footprints in Natural Attenuation of BTEX. Biodegradation, 2004, 15, 419-434.	3.0	14
58	Modeling Intrinsic Bioremediation for Interpret Observable Biogeochemical Footprints of BTEX Biodegradation: The Need for Fermentation and Abiotic Chemical Processes. Biodegradation, 2004, 15, 405-417.	3.0	14
59	Decision support in urban water management based on generic scenarios: The example of NoMix technology. Journal of Environmental Management, 2010, 91, 2676-2687.	7.8	13
60	The clean plan: analysing sanitation planning in India using the CWIS planning framework. Journal of Water Sanitation and Hygiene for Development, 2021, 11, 1036-1047.	1.8	11
61	Source Separation and Decentralization. , 2011, , 203-229.		10
62	Stochastic modeling to identify requirements for centralized monitoring of distributed wastewater treatment. Water Science and Technology, 2012, 65, 1067-1075.	2.5	9
63	Quantifying physical disintegration of faeces in sewers: Stochastic model and flow reactor experiments. Water Research, 2019, 152, 159-170.	11.3	9
64	Comparative analysis of sanitation systems for resource recovery: Influence of configurations and single technology components. Water Research, 2020, 186, 116281.	11.3	9
65	A Simplified Sanitary Sewer System Generator for Exploratory Modelling at City-Scale. Water Research, 2022, 209, 117903.	11.3	8
66	Ex-ante quantification of nutrient, total solids, and water flows in sanitation systems. Journal of Environmental Management, 2021, 280, 111785.	7.8	7
67	Identifying biases in deterioration models using synthetic sewer data. Water Science and Technology, 2012, 66, 2363-2369.	2.5	6
68	Effects of Transition to Waterâ€Efficient Solutions on Existing Centralized Sewer Systems—An Integrated Biophysical Modeling Approach. Water Resources Research, 2021, 57, e2020WR027616.	4.2	2
69	The Cost of Uncertainty and the Value of Flexibility in Water and Wastewater Infrastructure Planning. Proceedings of the Water Environment Federation, 2010, 2010, 487-500.	0.0	1
70	Modeling Intrinsic Bioremediation for Interpret Observable Biogeochemical Footprints of BTEX Biodegradation: The Need for Fermentation and Abiotic Chemical Processes. ChemInform, 2005, 36, no.	0.0	0
71	Moving-bed biological treatment (MBBT) of municipal wastewater: denitrification. Water Science and Technology, 2001, 43, 337-44.	2.5	0