
Yufei Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4945537/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Scaled-up synthesis of defect-rich layered double hydroxide monolayers without organic species for efficient oxygen evolution reaction. Green Energy and Environment, 2022, 7, 975-982.	8.7	28
2	Super‣table Mineralization of Ni ²⁺ Ions from Wastewater using CaFe Layered Double Hydroxide. Advanced Functional Materials, 2022, 32, 2106645.	14.9	28
3	Remote Synthesis of Layered Double Hydroxide Nanosheets Through the Automatic Chemical Robot. Chemical Research in Chinese Universities, 2022, 38, 217-222.	2.6	5
4	Dual Photo―and Mechanochromisms of Graphitic Carbon Nitride/Polyvinyl Alcohol Film. Advanced Functional Materials, 2022, 32, 2110285.	14.9	20
5	Single Carbon Vacancy Traps Atomic Platinum for Hydrogen Evolution Catalysis. Journal of the American Chemical Society, 2022, 144, 2171-2178.	13.7	140
6	A long-life lithium-oxygen battery via a molecular quenching/mediating mechanism. Science Advances, 2022, 8, eabm1899.	10.3	26
7	Hierarchical trace copper incorporation activated cobalt layered double hydroxide as a highly selective methanol conversion electrocatalyst to realize energy-matched photovoltaic-electrocatalytic formate and hydrogen co-production. Journal of Materials Chemistry A, 2022, 10, 19649-19661.	10.3	12
8	A high strength, low friction, and biocompatible hydrogel from PVA, chitosan and sodium alginate for articular cartilage. Carbohydrate Polymers, 2022, 286, 119268.	10.2	55
9	Modulating Pt-O-Pt atomic clusters with isolated cobalt atoms for enhanced hydrogen evolution catalysis. Nature Communications, 2022, 13, 2430.	12.8	98
10	Activated MoS ₂ by Constructing Single Atomic Cation Vacancies for Accelerated Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2022, 14, 26846-26857.	8.0	9
11	Hydroxyl vacancies triggered high methanol oxidation activity of monolayered layered double hydroxides for energy-saving hydrogen production. Materials Today Energy, 2022, 28, 101082.	4.7	10
12	Photocatalytic syngas synthesis from CO2 and H2O using ultrafine CeO2-decorated layered double hydroxide nanosheets under visible-light up to 600 nm. Frontiers of Chemical Science and Engineering, 2021, 15, 99-108.	4.4	22
13	Structure–dependent degradation of nitroimidazoles by cobalt–manganese layered double hydroxide catalyzed peroxymonosulfate process. Chemosphere, 2021, 266, 129006.	8.2	34
14	Defect engineering of NiCo-layered double hydroxide hollow nanocages for highly selective photoreduction of CO ₂ to CH ₄ with suppressing H ₂ evolution. Inorganic Chemistry Frontiers, 2021, 8, 996-1004.	6.0	38
15	Atomically dispersed Rh-doped NiFe layered double hydroxides: precise location of Rh and promoting hydrazine electrooxidation properties. Nanoscale, 2021, 13, 1869-1874.	5.6	22
16	Recent Advances in Layered Double Hydroxides and Their Derivatives for Biomedical Applications. Acta Chimica Sinica, 2021, 79, 238.	1.4	14
17	Green light (550 nm) driven tunable syngas synthesis from CO ₂ photoreduction using heterostructured layered double hydroxide/TiC photocatalysts. Catalysis Science and Technology, 2021, 11, 7091-7097.	4.1	7
18	Highly efficient atomically dispersed Co–N active sites in porous carbon for high-performance capacitive desalination of brackish water. Journal of Materials Chemistry A, 2021, 9, 3066-3076.	10.3	33

#	Article	IF	CITATIONS
19	Theoretical study on the anisotropic photo-induced carrier mobilities in layered double hydroxide-based photocatalysts. Journal of Materials Chemistry A, 2021, 9, 20466-20482.	10.3	8
20	Responses of Defect-Rich Zr-Based Metal–Organic Frameworks toward NH ₃ Adsorption. Journal of the American Chemical Society, 2021, 143, 3205-3218.	13.7	47
21	600Ânm induced nearly 99% selectivity of CH4 from CO2 photoreduction using defect-rich monolayer structures. Cell Reports Physical Science, 2021, 2, 100322.	5.6	23
22	Non-solvent phase separation-assisted fabrication for flexible polyacrylonitrile based carbon membrane with excellent mechanical properties. Journal of Macromolecular Science - Pure and Applied Chemistry, 2021, 58, 567-577.	2.2	1
23	Facile fabrication of tough and biocompatible hydrogels from polyvinyl alcohol and agarose. Journal of Applied Polymer Science, 2021, 138, 50979.	2.6	7
24	650Ânm-driven syngas evolution from photocatalytic CO2 reduction over Co-containing ternary layered double hydroxide nanosheets. Chemical Engineering Journal, 2021, 412, 128362.	12.7	49
25	Topological Transformation of Mgâ€Containing Layered Double Hydroxide Nanosheets for Efficient Photodriven CH ₄ Coupling. Chemistry - A European Journal, 2021, 27, 13211-13220.	3.3	14
26	Anchoring Sites Engineering in Singleâ€Atom Catalysts for Highly Efficient Electrochemical Energy Conversion Reactions. Advanced Materials, 2021, 33, e2102801.	21.0	64
27	Scale-up synthesis of monolayer layered double hydroxide nanosheets via separate nucleation and aging steps method for efficient CO2 photoreduction. Chemical Engineering Journal, 2021, 419, 129390.	12.7	44
28	Solar-driven hydrogen production from steam methane reforming using highly dispersed metallic Ni catalysts supported on layered double hydroxide nanosheets. Chemical Engineering Science, 2021, 245, 116839.	3.8	18
29	Constructing Atomic Heterometallic Sites in Ultrathin Nickel-Incorporated Cobalt Phosphide Nanosheets via a Boron-Assisted Strategy for Highly Efficient Water Splitting. Nano Letters, 2021, 21, 823-832.	9.1	91
30	Highly Accessible Atomically Dispersed Feâ€N <i>_x</i> Sites Electrocatalyst for Protonâ€Exchange Membrane Fuel Cell. Advanced Science, 2021, 8, 2002249.	11.2	67
31	Efficient N ₂ reduction with the VS ₂ electrocatalyst: identifying the active sites and unraveling the reaction pathway. Journal of Materials Chemistry A, 2021, 9, 24985-24992.	10.3	12
32	Enhanced Electrocatalytic Oxidation of Formate via Introducing Surface Reactive Oxygen Species to a CeO ₂ Substrate. ACS Applied Materials & Interfaces, 2021, 13, 51643-51651.	8.0	14
33	Controllable Modulation of Defects for Layered Double Hydroxide Nanosheets by Altering Intercalation Anions for Efficient Electrooxidation Catalysis. Chemistry - an Asian Journal, 2021, 16, 3993-3998.	3.3	1
34	Tuning the selectivity of photoreduction of CO2 to syngas over Pd/layered double hydroxide nanosheets under visible light up to 600Ânm. Journal of Energy Chemistry, 2020, 46, 1-7.	12.9	59
35	Manganese Oxide Modified Nickel Catalysts for Photothermal CO Hydrogenation to Light Olefins. Advanced Energy Materials, 2020, 10, 1902860.	19.5	56
36	Visible-Light-Induced Hydrogenation of Câ•C Bonds by Hydrazine over Ultrathin Layered Double Hydroxide Nanosheets. Industrial & Engineering Chemistry Research, 2020, 59, 14315-14322.	3.7	13

#	Article	IF	CITATIONS
37	Photocatalytic selective oxidation of benzene to phenol in water over layered double hydroxide: A thermodynamic and kinetic perspective. Chemical Engineering Journal, 2020, 388, 124248.	12.7	79
38	Selective catalytic oxidation of NH ₃ over noble metal-based catalysts: state of the art and future prospects. Catalysis Science and Technology, 2020, 10, 5792-5810.	4.1	82
39	Highly selective photo-hydroxylation of phenol using ultrathin NiFe-layered double hydroxide nanosheets under visible-light up to 550 nm. Green Chemistry, 2020, 22, 8604-8613.	9.0	24
40	Recent Progress on Nanostructured Layered Double Hydroxides for Visibleâ€Lightâ€Induced Photoreduction of CO ₂ . Chemistry - an Asian Journal, 2020, 15, 3380-3389.	3.3	28
41	Fabrication of antiseptic, conductive and robust polyvinyl alcohol/chitosan composite hydrogels. Journal of Polymer Research, 2020, 27, 1.	2.4	15
42	Tunable Syngas Synthesis from Photocatalytic CO2 Reduction Under Visible-Light Irradiation by Interfacial Engineering. Transactions of Tianjin University, 2020, 26, 352-361.	6.4	33
43	600 nm-driven photoreduction of CO2 through the topological transformation of layered double hydroxides nanosheets. Applied Catalysis B: Environmental, 2020, 270, 118884.	20.2	46
44	600 nm Irradiation-Induced Efficient Photocatalytic CO ₂ Reduction by Ultrathin Layered Double Hydroxide Nanosheets. Industrial & Engineering Chemistry Research, 2020, 59, 5848-5857.	3.7	47
45	Site- and Spatial-Selective Integration of Non-noble Metal Ions into Quantum Dots for Robust Hydrogen Photogeneration. Matter, 2020, 3, 571-585.	10.0	36
46	Intercalation Effect in NiAl-layered Double Hydroxide Nanosheets for CO2 Reduction Under Visible Light. Chemical Research in Chinese Universities, 2020, 36, 127-133.	2.6	16
47	Engineering Active Ni Sites in Ternary Layered Double Hydroxide Nanosheets for a Highly Selective Photoreduction of CO ₂ to CH ₄ under Irradiation above 500 nm. Industrial & Engineering Chemistry Research, 2020, 59, 3008-3015.	3.7	52
48	500 nm induced tunable syngas synthesis from CO ₂ photoreduction by controlling heterojunction concentration. Chemical Communications, 2020, 56, 5354-5357.	4.1	40
49	Selective photocatalytic CO2 reduction over Zn-based layered double hydroxides containing tri or tetravalent metals. Science Bulletin, 2020, 65, 987-994.	9.0	205
50	Recent advance in ultrathin/ultrasmall layered double hydroxides. Chinese Science Bulletin, 2020, 65, 547-564.	0.7	5
51	2020 Roadmap on two-dimensional nanomaterials for environmental catalysis. Chinese Chemical Letters, 2019, 30, 2065-2088.	9.0	90
52	Precise Control of the Oriented Layered Double Hydroxide Nanosheets Growth on Graphene Oxides Leading to Efficient Catalysts for Cascade Reactions. ChemCatChem, 2019, 11, 5466-5474.	3.7	12
53	Single Ru atoms with precise coordination on a monolayer layered double hydroxide for efficient electrooxidation catalysis. Chemical Science, 2019, 10, 378-384.	7.4	148
54	A versatile functionalized ionic liquid to boost the solution-mediated performances of lithium-oxygen batteries. Nature Communications, 2019, 10, 602.	12.8	138

#	Article	IF	CITATIONS
55	Highly Selective Photoreduction of CO ₂ with Suppressing H ₂ Evolution over Monolayer Layered Double Hydroxide under Irradiation above 600â€nm. Angewandte Chemie, 2019, 131, 11986-11993.	2.0	47
56	Highly Selective Photoreduction of CO ₂ with Suppressing H ₂ Evolution over Monolayer Layered Double Hydroxide under Irradiation above 600â€nm. Angewandte Chemie - International Edition, 2019, 58, 11860-11867.	13.8	224
57	Ultrathinâ€Carbonâ€Layerâ€Protected PtCu Nanoparticles Encapsulated in Carbon Capsules: A Structure Engineering of the Anode Electrocatalyst for Direct Formic Acid Fuel Cells. Particle and Particle Systems Characterization, 2019, 36, 1900100.	2.3	10
58	Ultrathin Porous NiCo ₂ O ₄ Nanosheets for Lithium–Oxygen Batteries: An Excellent Performance Deriving from an Enhanced Solution Mechanism. ACS Applied Energy Materials, 2019, 2, 4215-4223.	5.1	18
59	Interface Modulation of Two-Dimensional Superlattices for Efficient Overall Water Splitting. Nano Letters, 2019, 19, 4518-4526.	9.1	191
60	A Simple Synthetic Strategy toward Defectâ€Rich Porous Monolayer NiFe‣ayered Double Hydroxide Nanosheets for Efficient Electrocatalytic Water Oxidation. Advanced Energy Materials, 2019, 9, 1900881.	19.5	363
61	Porous Mo2C nanorods as an efficient catalyst for the hydrogen evolution reaction. Journal of Physics and Chemistry of Solids, 2019, 132, 230-235.	4.0	32
62	Role of Ultrathin Carbon Shell in Enhancing the Performance of PtZn Intermetallic Nanoparticles as an Anode Electrocatalyst for Direct Formic Acid Fuel Cells. ChemElectroChem, 2019, 6, 2316-2323.	3.4	16
63	Tuning Oxygen Vacancies in Ultrathin TiO ₂ Nanosheets to Boost Photocatalytic Nitrogen Fixation up to 700 nm. Advanced Materials, 2019, 31, e1806482.	21.0	732
64	Photothermal hydrocarbon synthesis using alumina-supported cobalt metal nanoparticle catalysts derived from layered-double-hydroxide nanosheets. Nano Energy, 2019, 60, 467-475.	16.0	67
65	Solar- versus Thermal-Driven Catalysis for Energy Conversion. Joule, 2019, 3, 920-937.	24.0	153
66	P doped MoS2 nanoplates embedded in nitrogen doped carbon nanofibers as an efficient catalyst for hydrogen evolution reaction. Journal of Colloid and Interface Science, 2019, 547, 291-298.	9.4	33
67	Ammonia Detection Methods in Photocatalytic and Electrocatalytic Experiments: How to Improve the Reliability of NH ₃ Production Rates?. Advanced Science, 2019, 6, 1802109.	11.2	379
68	Multiresponsive Supramolecular Luminescent Hydrogels Based on a Nucleoside/Lanthanide Complex. ACS Applied Materials & Interfaces, 2019, 11, 47404-47412.	8.0	42
69	Tuning the Coordination Environment in Single-Atom Catalysts to Achieve Highly Efficient Oxygen Reduction Reactions. Journal of the American Chemical Society, 2019, 141, 20118-20126.	13.7	683
70	Molecular nitrogen promotes catalytic hydrodeoxygenation. Nature Catalysis, 2019, 2, 1078-1087.	34.4	63
71	Hollow CeO2 spheres conformally coated with graphitic carbon for high-performance supercapacitor electrodes. Applied Surface Science, 2019, 463, 244-252.	6.1	63
72	Conformal carbon coating on WS2 nanotubes for excellent electrochemical performance of lithium-ion batteries. Nanotechnology, 2019, 30, 035401.	2.6	5

#	Article	IF	CITATIONS
73	Two-dimensional-related catalytic materials for solar-driven conversion of CO _x into valuable chemical feedstocks. Chemical Society Reviews, 2019, 48, 1972-2010.	38.1	350
74	Activating room temperature phosphorescence by organic materials using synergistic effects. Journal of Materials Chemistry C, 2019, 7, 230-236.	5.5	43
75	Ultrafine monolayer Co-containing layered double hydroxide nanosheets for water oxidation. Journal of Energy Chemistry, 2019, 34, 57-63.	12.9	78
76	Subâ€3 nm Ultrafine Monolayer Layered Double Hydroxide Nanosheets for Electrochemical Water Oxidation. Advanced Energy Materials, 2018, 8, 1703585.	19.5	274
77	In-situ La doped Co3O4 as highly efficient photocatalyst for solar hydrogen generation. International Journal of Hydrogen Energy, 2018, 43, 8674-8682.	7.1	57
78	Silicaâ€Protected Ultrathin Ni ₃ FeN Nanocatalyst for the Efficient Hydrolytic Dehydrogenation of NH ₃ BH ₃ . Advanced Energy Materials, 2018, 8, 1702780.	19.5	66
79	Photothermal CO ₂ Hydrogenation: Aluminaâ€Supported CoFe Alloy Catalysts Derived from Layeredâ€Đoubleâ€Hydroxide Nanosheets for Efficient Photothermal CO ₂ Hydrogenation to Hydrocarbons (Adv. Mater. 3/2018). Advanced Materials, 2018, 30, 1870015.	21.0	3
80	Interface Engineering of High-Energy Faceted Co ₃ O ₄ /ZnO Heterostructured Catalysts Derived from Layered Double Hydroxide Nanosheets. Industrial & Engineering Chemistry Research, 2018, 57, 5259-5267.	3.7	42
81	Dual-mode emission of single-layered graphene quantum dots in confined nanospace: Anti-counterfeiting and sensor applications. Nano Research, 2018, 11, 2034-2045.	10.4	83
82	Highly Reversible Lithium Polysulfide Semiliquid Battery with Nitrogenâ€Rich Carbon Fiber Electrodes. Energy Technology, 2018, 6, 251-256.	3.8	11
83	Aluminaâ€Supported CoFe Alloy Catalysts Derived from Layeredâ€Doubleâ€Hydroxide Nanosheets for Efficient Photothermal CO ₂ Hydrogenation to Hydrocarbons. Advanced Materials, 2018, 30, 1704663.	21.0	309
84	Synergies between Unsaturated Zn/Cu Doping Sites in Carbon Dots Provide New Pathways for Photocatalytic Oxidation. ACS Catalysis, 2018, 8, 747-753.	11.2	53
85	Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nature Catalysis, 2018, 1, 985-992.	34.4	1,236
86	Cobalt-doped MnO2 ultrathin nanosheets with abundant oxygen vacancies supported on functionalized carbon nanofibers for efficient oxygen evolution. Nano Energy, 2018, 54, 129-137.	16.0	182
87	Photo-Driven Syngas Conversion to Lower Olefins over Oxygen-Decorated Fe5C2 Catalyst. CheM, 2018, 4, 2917-2928.	11.7	62
88	Reductive Transformation of Layeredâ€Doubleâ€Hydroxide Nanosheets to Feâ€Based Heterostructures for Efficient Visibleâ€Light Photocatalytic Hydrogenation of CO. Advanced Materials, 2018, 30, e1803127.	21.0	100
89	Photothermal Catalysis: Co-Based Catalysts Derived from Layered-Double-Hydroxide Nanosheets for the Photothermal Production of Light Olefins (Adv. Mater. 31/2018). Advanced Materials, 2018, 30, 1870230.	21.0	6
90	Fine Tuning the Heterostructured Interfaces by Topological Transformation of Layered Double Hydroxide Nanosheets. Industrial & Engineering Chemistry Research, 2018, 57, 10411-10420.	3.7	51

#	Article	IF	CITATIONS
91	Coâ€Based Catalysts Derived from Layeredâ€Doubleâ€Hydroxide Nanosheets for the Photothermal Production of Light Olefins. Advanced Materials, 2018, 30, e1800527.	21.0	139
92	Unconventional Nickel Nitride Enriched with Nitrogen Vacancies as a Highâ€Efficiency Electrocatalyst for Hydrogen Evolution. Advanced Science, 2018, 5, 1800406.	11.2	163
93	Preparation of 4,4′-diaminostilbene-2,2′-disulfonic acid intercalated LDH/polypropylene nanocomposites with enhanced UV absorption property. Polymer Composites, 2017, 38, 1937-1947.	4.6	16
94	Visible-light-driven overall water splitting with a largely-enhanced efficiency over a Cu2O@ZnCr-layered double hydroxide photocatalyst. Nano Energy, 2017, 32, 463-469.	16.0	92
95	Alkaliâ€Assisted Synthesis of Nitrogen Deficient Graphitic Carbon Nitride with Tunable Band Structures for Efficient Visibleâ€Lightâ€Driven Hydrogen Evolution. Advanced Materials, 2017, 29, 1605148.	21.0	1,616
96	Nickel–Cobalt Diselenide 3D Mesoporous Nanosheet Networks Supported on Ni Foam: An Allâ€pH Highly Efficient Integrated Electrocatalyst for Hydrogen Evolution. Advanced Materials, 2017, 29, 1606521.	21.0	370
97	Cuâ€Doped Carbon Dots with Highly Ordered Alignment in Anisotropic Nanoâ€5pace for Improving the Photocatalytic Performance. Solar Rrl, 2017, 1, 1700029.	5.8	26
98	Photocatalysis: Alkaliâ€Assisted Synthesis of Nitrogen Deficient Graphitic Carbon Nitride with Tunable Band Structures for Efficient Visible‣ightâ€Driven Hydrogen Evolution (Adv. Mater. 16/2017). Advanced Materials, 2017, 29, .	21.0	10
99	Selfâ€Assembled Au/CdSe Nanocrystal Clusters for Plasmonâ€Mediated Photocatalytic Hydrogen Evolution. Advanced Materials, 2017, 29, 1700803.	21.0	311
100	Defectâ€Engineered Ultrathin δâ€MnO ₂ Nanosheet Arrays as Bifunctional Electrodes for Efficient Overall Water Splitting. Advanced Energy Materials, 2017, 7, 1700005.	19.5	553
101	Heteroelement Y-doped α-Ni(OH) ₂ nanosheets with excellent pseudocapacitive performance. Journal of Materials Chemistry A, 2017, 5, 10039-10047.	10.3	80
102	Sb ₂ O ₃ /MXene(Ti ₃ C ₂ T _x) hybrid anode materials with enhanced performance for sodium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 12445-12452.	10.3	245
103	Modified Tetrathiafulvalene as an Organic Conductor for Improving Performances of Liâ°'O ₂ Batteries. Angewandte Chemie - International Edition, 2017, 56, 8505-8509.	13.8	90
104	Modified Tetrathiafulvalene as an Organic Conductor for Improving Performances of Liâ^'O 2 Batteries. Angewandte Chemie, 2017, 129, 8625-8629.	2.0	11
105	Graphene with Atomic-Level In-Plane Decoration of <i>h</i> -BN Domains for Efficient Photocatalysis. Chemistry of Materials, 2017, 29, 2769-2776.	6.7	61
106	Naturally nitrogen doped porous carbon derived from waste shrimp shells for high-performance lithium ion batteries and supercapacitors. Microporous and Mesoporous Materials, 2017, 246, 72-80.	4.4	156
107	Nitrogenâ€Doped Porous Carbon Nanosheets from Ecoâ€Friendly Eucalyptus Leaves as High Performance Electrode Materials for Supercapacitors and Lithium Ion Batteries. Chemistry - A European Journal, 2017, 23, 3683-3690.	3.3	132
108	A multi-functional gel co-polymer bridging liquid electrolyte and solid cathode nanoparticles: An efficient route to Li–O 2 batteries with improved performance. Energy Storage Materials, 2017, 7, 1-7.	18.0	30

Yufei Zhao

#	Article	IF	CITATIONS
109	Layeredâ€Doubleâ€Hydroxide Nanosheets as Efficient Visibleâ€Lightâ€Driven Photocatalysts for Dinitrogen Fixation. Advanced Materials, 2017, 29, 1703828.	21.0	524
110	Fe ₃ C@nitrogen doped CNT arrays aligned on nitrogen functionalized carbon nanofibers as highly efficient catalysts for the oxygen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 19672-19679.	10.3	109
111	Water Splitting: Defectâ€Engineered Ultrathin Î′â€MnO ₂ Nanosheet Arrays as Bifunctional Electrodes for Efficient Overall Water Splitting (Adv. Energy Mater. 18/2017). Advanced Energy Materials, 2017, 7, .	19.5	6
112	NiFe Layered Double Hydroxide Nanoparticles on Co,N odoped Carbon Nanoframes as Efficient Bifunctional Catalysts for Rechargeable Zinc–Air Batteries. Advanced Energy Materials, 2017, 7, 1700467.	19.5	422
113	Back Cover: Solar RRL 5â^•2017. Solar Rrl, 2017, 1, 1770117.	5.8	0
114	Photocatalysts: Layeredâ€Doubleâ€Hydroxide Nanosheets as Efficient Visibleâ€Lightâ€Driven Photocatalysts for Dinitrogen Fixation (Adv. Mater. 42/2017). Advanced Materials, 2017, 29, .	21.0	3
115	Zincâ€Air Batteries: NiFe Layered Double Hydroxide Nanoparticles on Co,Nâ€Codoped Carbon Nanoframes as Efficient Bifunctional Catalysts for Rechargeable Zinc–Air Batteries (Adv. Energy Mater. 21/2017). Advanced Energy Materials, 2017, 7, .	19.5	5
116	A Sustainable Strategy for the Synthesis of Pyrochlore H ₄ Nb ₂ O ₇ Hollow Microspheres as Photocatalysts for Overall Water Splitting. ChemPlusChem, 2017, 82, 181-185.	2.8	30
117	Fabrication of Zn-Ti layered double hydroxide by varying cationic ratio of Ti 4+ and its application as UV absorbent. Chinese Chemical Letters, 2017, 28, 394-399.	9.0	41
118	Layered Double Hydroxide Nanostructured Photocatalysts for Renewable Energy Production. Advanced Energy Materials, 2016, 6, 1501974.	19.5	389
119	Controllable Synthesis of Ultrathin Transitionâ€Metal Hydroxide Nanosheets and their Extended Composite Nanostructures for Enhanced Catalytic Activity in the Heck Reaction. Angewandte Chemie - International Edition, 2016, 55, 2167-2170.	13.8	105
120	Oxideâ€Modified Nickel Photocatalysts for the Production of Hydrocarbons in Visible Light. Angewandte Chemie - International Edition, 2016, 55, 4215-4219.	13.8	176
121	Wellâ€Dispersed ZIFâ€Derived Co,Nâ€Coâ€doped Carbon Nanoframes through Mesoporousâ€6ilicaâ€Protected Calcination as Efficient Oxygen Reduction Electrocatalysts. Advanced Materials, 2016, 28, 1668-1674.	21.0	663
122	CdS Nanoparticleâ€Decorated Cd Nanosheets for Efficient Visible Lightâ€Driven Photocatalytic Hydrogen Evolution. Advanced Energy Materials, 2016, 6, 1501241.	19.5	253
123	Controllable Synthesis of Ultrathin Transitionâ€Metal Hydroxide Nanosheets and their Extended Composite Nanostructures for Enhanced Catalytic Activity in the Heck Reaction. Angewandte Chemie, 2016, 128, 2207-2210.	2.0	13
124	Rücktitelbild: Controllable Synthesis of Ultrathin Transitionâ€Metal Hydroxide Nanosheets and their Extended Composite Nanostructures for Enhanced Catalytic Activity in the Heck Reaction (Angew.) Tj ETQq0 0 0 i	rg₿₫ /Ove	rlock 10 Tf 5
125	Hydrogen Evolution: CdS Nanoparticleâ€Decorated Cd Nanosheets for Efficient Visible Lightâ€Driven Photocatalytic Hydrogen Evolution (Adv. Energy Mater. 3/2016). Advanced Energy Materials, 2016, 6, .	19.5	3

Carbon Nanoframes: Wellâ€Dispersed ZIFâ€Derived Co,Nâ€Coâ€doped Carbon Nanoframes through 126 Mesoporousâ€Silicaâ€Protected Calcination as Efficient Oxygen Reduction Electrocatalysts (Adv. Mater.) Tj ETQq0ஹørgBT /@verlock 1

#	Article	IF	CITATIONS
127	Ultrafine NiO Nanosheets Stabilized by TiO ₂ from Monolayer NiTi-LDH Precursors: An Active Water Oxidation Electrocatalyst. Journal of the American Chemical Society, 2016, 138, 6517-6524.	13.7	597
128	Smart Utilization of Carbon Dots in Semiconductor Photocatalysis. Advanced Materials, 2016, 28, 9454-9477.	21.0	622
129	Electrospun cobalt embedded porous nitrogen doped carbon nanofibers as an efficient catalyst for water splitting. Journal of Materials Chemistry A, 2016, 4, 12818-12824.	10.3	87
130	CoOOH ultrathin nanoflake arrays aligned on nickel foam: fabrication and use in high-performance supercapacitor devices. Journal of Materials Chemistry A, 2016, 4, 12833-12840.	10.3	36
131	Carbon Nanosheets: Nitrogenâ€Doped Porous Carbon Nanosheets Templated from gâ€C ₃ N ₄ as Metalâ€Free Electrocatalysts for Efficient Oxygen Reduction Reaction (Adv. Mater. 25/2016). Advanced Materials, 2016, 28, 5140-5140.	21.0	44
132	Nitrogenâ€Doped Porous Carbon Nanosheets Templated from g ₃ N ₄ as Metalâ€Free Electrocatalysts for Efficient Oxygen Reduction Reaction. Advanced Materials, 2016, 28, 5080-5086.	21.0	718
133	Ni ₃ FeN Nanoparticles Derived from Ultrathin NiFe‣ayered Double Hydroxide Nanosheets: An Efficient Overall Water Splitting Electrocatalyst. Advanced Energy Materials, 2016, 6, 1502585.	19.5	668
134	Oxideâ€Modified Nickel Photocatalysts for the Production of Hydrocarbons in Visible Light. Angewandte Chemie, 2016, 128, 4287-4291.	2.0	33
135	Rose flower-like NiCo2O4 with hierarchically porous structures for highly reversible lithium storage. Journal of Alloys and Compounds, 2016, 684, 691-698.	5.5	45
136	Facile synthesis of ultrathin SnNb ₂ O ₆ nanosheets towards improved visible-light photocatalytic H ₂ -production activity. Chemical Communications, 2016, 52, 8239-8242.	4.1	79
137	Water Splitting: Ni ₃ FeN Nanoparticles Derived from Ultrathin NiFe‣ayered Double Hydroxide Nanosheets: An Efficient Overall Water Splitting Electrocatalyst (Adv. Energy Mater.) Tj ETQq1 1 0.78	43 1%. 5gBT	- Qwerlock 1
138	Self-assembly film of azobenzene and layered double hydroxide and its application as a light-controlled reversible sensor for the detection of Be 2+. Sensors and Actuators B: Chemical, 2016, 223, 671-678.	7.8	6
139	A Bifunctional Organic Redox Catalyst for Rechargeable Lithium–Oxygen Batteries with Enhanced Performances. Advanced Science, 2016, 3, 1500285.	11.2	37
140	Recent Advances in the Synthesis, Characterization and Application of Zn ⁺ ontaining Heterogeneous Catalysts. Advanced Science, 2016, 3, 1500424.	11.2	42
141	Photoreduction: Defectâ€Rich Ultrathin ZnAl‣ayered Double Hydroxide Nanosheets for Efficient Photoreduction of CO ₂ to CO with Water (Adv. Mater. 47/2015). Advanced Materials, 2015, 27, 7823-7823.	21.0	25
142	Effects of surfactants on visible-light-driven photocatalytic hydrogen evolution activities of AgInZn7S9 nanorods. Applied Surface Science, 2015, 358, 485-490.	6.1	23
143	MoS ₂ Nanosheets Supported on 3D Graphene Aerogel as a Highly Efficient Catalyst for Hydrogen Evolution. Chemistry - A European Journal, 2015, 21, 15908-15913.	3.3	99
144	Defectâ€Rich Ultrathin ZnAl‣ayered Double Hydroxide Nanosheets for Efficient Photoreduction of CO ₂ to CO with Water. Advanced Materials, 2015, 27, 7824-7831.	21.0	608

#	Article	IF	CITATIONS
145	Frontispiece: MoS ₂ Nanosheets Supported on 3D Graphene Aerogel as a Highly Efficient Catalyst for Hydrogen Evolution. Chemistry - A European Journal, 2015, 21, .	3.3	0
146	Graphene-Co3O4 nanocomposite as electrocatalyst with high performance for oxygen evolution reaction. Scientific Reports, 2015, 5, 7629.	3.3	234
147	Highly luminescent nitrogen-doped carbon quantum dots as effective fluorescent probes for mercuric and iodide ions. Journal of Materials Chemistry C, 2015, 3, 1922-1928.	5.5	173
148	Porous graphene wrapped CoO nanoparticles for highly efficient oxygen evolution. Journal of Materials Chemistry A, 2015, 3, 5402-5408.	10.3	79
149	Flower-like CdSe ultrathin nanosheet assemblies for enhanced visible-light-driven photocatalytic H ₂ production. Chemical Communications, 2015, 51, 4677-4680.	4.1	53
150	Microwave-assisted Synthesis of Mesoporous Co ₃ O ₄ Nanoflakes for Applications in Lithium Ion Batteries and Oxygen Evolution Reactions. ACS Applied Materials & Interfaces, 2015, 7, 3306-3313.	8.0	169
151	Ni ³⁺ doped monolayer layered double hydroxide nanosheets as efficient electrodes for supercapacitors. Nanoscale, 2015, 7, 7168-7173.	5.6	127
152	A three dimensional nanowall of calcein/layered double hydroxide as an electrogenerated chemiluminescence sensor. RSC Advances, 2015, 5, 89056-89061.	3.6	6
153	Scalable Preparation of LiFePO ₄ /C Nanocomposites with sp ² â€Coordinated Carbon Coating as Highâ€Performance Cathode Materials for Lithiumâ€Ion Batteries. ChemElectroChem, 2015, 2, 2096-2103.	3.4	9
154	Core–shell Cu@(CuCo-alloy)/Al ₂ O ₃ catalysts for the synthesis of higher alcohols from syngas. Green Chemistry, 2015, 17, 1525-1534.	9.0	93
155	Carbon quantum dots/TiO2 composites for efficient photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2014, 2, 3344.	10.3	601
156	Oneâ€Pot Hydrothermal Synthesis and Photocatalytic Hydrogen Evolution of Pyrochlore Type K ₂ Nb ₂ O ₆ . Chinese Journal of Chemistry, 2014, 32, 485-490.	4.9	24
157	Insight into the Capacitive Properties of Reduced Graphene Oxide. ACS Applied Materials & Interfaces, 2014, 6, 2248-2254.	8.0	57
158	Catalytic behavior of supported Ru nanoparticles on the (101) and (001) facets of anatase TiO2. RSC Advances, 2014, 4, 10834.	3.6	49
159	Synthesis of LiAl ₂ -layered double hydroxides for CO ₂ capture over a wide temperature range. Journal of Materials Chemistry A, 2014, 2, 18454-18462.	10.3	69
160	Rational design of CuO@Cu nanostructure with tuneable morphology and electrochemical properties. RSC Advances, 2014, 4, 8121.	3.6	4
161	Facile preparation of black Nb ⁴⁺ self-doped K ₄ Nb ₆ O ₁₇ microspheres with high solar absorption and enhanced photocatalytic activity. Chemical Communications, 2014, 50, 9554.	4.1	92
162	NiTi-Layered double hydroxides nanosheets as efficient photocatalysts for oxygen evolution from water using visible light. Chemical Science, 2014, 5, 951-958.	7.4	250

#	Article	IF	CITATIONS
163	Hierarchical macroporous/mesoporous NiCo ₂ O ₄ nanosheets as cathode catalysts for rechargeable Li–O ₂ batteries. Journal of Materials Chemistry A, 2014, 2, 12053.	10.3	82
164	A Structured Catalyst toward Mercaptan Sweetening with Largely Enhanced Synergistic Effect. Industrial & Engineering Chemistry Research, 2014, 53, 4595-4603.	3.7	8
165	Novel Na2Mo4O13/α-MoO3 hybrid material as highly efficient CWAO catalyst for dye degradation at ambient conditions. Scientific Reports, 2014, 4, 6797.	3.3	31
166	Micelle-Template Synthesis of Nitrogen-Doped Mesoporous Graphene as an Efficient Metal-Free Electrocatalyst for Hydrogen Production. Scientific Reports, 2014, 4, 7557.	3.3	93
167	Enhanced low-temperature activity of CO2 methanation over highly-dispersed Ni/TiO2 catalyst. Catalysis Science and Technology, 2013, 3, 2627.	4.1	246
168	Ce-Promoted Rh/TiO2 Heterogeneous Catalysts Towards Ethanol Production from Syngas. Catalysis Letters, 2013, 143, 1247-1254.	2.6	26
169	Visible-Light-Responsive Photocatalysts toward Water Oxidation Based on NiTi-Layered Double Hydroxide/Reduced Graphene Oxide Composite Materials. ACS Applied Materials & Interfaces, 2013, 5, 10233-10239.	8.0	147
170	Catalytic conversion of syngas to mixed alcohols over CuFe-based catalysts derived from layered double hydroxides. Catalysis Science and Technology, 2013, 3, 1324.	4.1	106
171	Photohole-oxidation-assisted anchoring of ultra-small Ru clusters onto TiO2 with excellent catalytic activity and stability. Journal of Materials Chemistry A, 2013, 1, 2461.	10.3	54
172	Binary Cu–Co catalysts derived from hydrotalcites with excellent activity and recyclability towards NH3BH3 dehydrogenation. Journal of Materials Chemistry A, 2013, 1, 5370.	10.3	60
173	Synthesis of MoS ₂ and MoO ₂ for their applications in H ₂ generation and lithium ion batteries: a review. Science and Technology of Advanced Materials, 2013, 14, 043501.	6.1	112
174	Synthesis and antimicrobial activity of ZnTi–layered double hydroxide nanosheets. Journal of Materials Chemistry B, 2013, 1, 5988.	5.8	56
175	Bubble template synthesis of Sn2Nb2O7 hollow spheres for enhanced visible-light-driven photocatalytic hydrogen production. Chemical Communications, 2013, 49, 9872.	4.1	84
176	Core–Shell Layered Double Hydroxide Microspheres with Tunable Interior Architecture for Supercapacitors. Chemistry of Materials, 2012, 24, 1192-1197.	6.7	358
177	Fabrication of Hierarchical Layered Double Hydroxide Framework on Aluminum Foam as a Structured Adsorbent for Water Treatment. Industrial & Engineering Chemistry Research, 2012, 51, 285-291.	3.7	55
178	Highly Dispersed TiO ₆ Units in a Layered Double Hydroxide for Water Splitting. Chemistry - A European Journal, 2012, 18, 11949-11958.	3.3	132
179	Fabrication of aluminum-doped α-Ni(OH)2 with hierarchical architecture and its largely enhanced electrocatalytic performance. Electrochimica Acta, 2012, 80, 257-263.	5.2	25
180	A structured catalyst based on cobalt phthalocyanine/calcined Mg–Al hydrotalcite film for the oxidation of mercaptan. Green Chemistry, 2012, 14, 1909.	9.0	43

#	Article	IF	CITATIONS
181	Immobilized Cu–Cr layered double hydroxide films with visible-light responsive photocatalysis for organic pollutants. Chemical Engineering Journal, 2012, 184, 261-267.	12.7	86
182	Enhancement of visible light photocatalysis by grafting ZnO nanoplatelets with exposed (0001) facets onto a hierarchical substrate. Chemical Communications, 2011, 47, 10797.	4.1	89
183	Patterned fluorescence films with reversible thermal response based on the host–guest superarchitecture. Journal of Materials Chemistry, 2011, 21, 11116.	6.7	19
184	Preparation of Oriented Layered Double Hydroxide Film Using Electrophoretic Deposition and Its Application in Water Treatment. Industrial & Engineering Chemistry Research, 2011, 50, 2800-2806.	3.7	33
185	A Family of Visibleâ€Light Responsive Photocatalysts Obtained by Dispersing CrO ₆ Octahedra into a Hydrotalcite Matrix. Chemistry - A European Journal, 2011, 17, 13175-13181.	3.3	91
186	Hierarchical films of layered double hydroxides by using a sol–gel process and their high adaptability in water treatment. Chemical Communications, 2010, 46, 3031.	4.1	127
187	Biotemplated Hierarchical Nanostructure of Layered Double Hydroxides with Improved Photocatalysis Performance. ACS Nano, 2009, 3, 4009-4016.	14.6	265