List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4945376/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Aminoxyl Catalyzed Electrochemical Ethanol Detection: Development of a New Breathalyzer Using Molecular Catalysis. ECS Meeting Abstracts, 2022, MA2022-01, 2183-2183.	0.0	0
2	(Invited) Electroanalytical Tools for Reaction Optimization and Mechanistic Investigation. ECS Meeting Abstracts, 2021, MA2021-01, 1728-1728.	0.0	0
3	Constant Potential and Constant Current Electrolysis: An Introduction and Comparison of Different Techniques for Organic Electrosynthesis. Journal of Organic Chemistry, 2021, 86, 15866-15874.	3.2	30
4	Deriving the Turnover Frequency of Aminoxyl-Catalyzed Alcohol Oxidation by Chronoamperometry: An Introduction to Organic Electrocatalysis. Journal of Chemical Education, 2021, 98, 600-606.	2.3	24
5	Unrevealing the Mechanism of Aminoxyl Catalyzed Electrochemical Oxidation of Alcohols By Unpolished Glassy Carbon Electrode. ECS Meeting Abstracts, 2021, MA2021-02, 1400-1400.	0.0	0
6	Why Is Voltammetric Current Scan Rate Dependent? Representation of a Mathematically Dense Concept Using Conceptual Thinking. Journal of Chemical Education, 2021, 98, 3957-3961.	2.3	9
7	Electrochemistry Under Microscope: Measuring the Thickness of Diffusion Layer in Thin Layer Electrochemical Cells with Optical Microscope. ECS Meeting Abstracts, 2021, MA2021-02, 1397-1397.	0.0	0
8	Electrochemical Aminoxyl-Mediated Oxidation of Primary Alcohols in Lignin to Carboxylic Acids: Polymer Modification and Depolymerization. Journal of the American Chemical Society, 2019, 141, 15266-15276.	13.7	118
9	Use of Imidoxyl Radical Mediators for Electrochemical Oxidation/Depolymerization of Lignin. ECS Meeting Abstracts, 2019, , .	0.0	0
10	Electrochemical Functionalâ€Groupâ€Tolerant Shonoâ€ŧype Oxidation of Cyclic Carbamates Enabled by Aminoxyl Mediators. Angewandte Chemie, 2018, 130, 6796-6800.	2.0	33
11	Graphitized Nitrogen-Doped Ordered Mesoporous Carbon Derived from Ionic Liquid; Catalytic Performance Toward ORR. Electrocatalysis, 2018, 9, 632-639.	3.0	13
12	Electrochemical Functionalâ€Groupâ€Tolerant Shonoâ€ŧype Oxidation of Cyclic Carbamates Enabled by Aminoxyl Mediators. Angewandte Chemie - International Edition, 2018, 57, 6686-6690.	13.8	103
13	Tetramethylpiperidine <i>N</i> -Oxyl (TEMPO), Phthalimide <i>N</i> -Oxyl (PINO), and Related <i>N</i> -Oxyl Species: Electrochemical Properties and Their Use in Electrocatalytic Reactions. Chemical Reviews, 2018, 118, 4834-4885.	47.7	681
14	<i>N</i> -Hydroxyphthalimide-Mediated Electrochemical Iodination of Methylarenes and Comparison to Electron-Transfer-Initiated C–H Functionalization. Journal of the American Chemical Society, 2018, 140, 22-25.	13.7	155
15	Electrochemical Oxidation of Alcohols and Aldehydes to Carboxylic Acids Catalyzed by 4-Acetamido-TEMPO: An Alternative to "Anelli―and "Pinnick―Oxidations. ACS Catalysis, 2018, 8, 6738-6744.	11.2	114
16	Electrochemical Functionalization of Methylarenes Initiated By Hydrogen Atom Transfer and Comparison to Electron-Transfer-Initiated Functionalization. ECS Meeting Abstracts, 2018, , .	0.0	0
17	Electrochemical Oxidation/Modification of Lignin Mediated By Aminoxyl Radicals. ECS Meeting Abstracts, 2018, , .	0.0	0
18	Electrochemical Cyclization of Adrenaline, the Simplest Derivatization for its Selective Determination. Electroanalysis, 2017, 29, 2004-2007.	2.9	9

#	Article	IF	CITATIONS
19	Electrocatalytic Alcohol Oxidation with TEMPO and Bicyclic Nitroxyl Derivatives: Driving Force Trumps Steric Effects. Journal of the American Chemical Society, 2015, 137, 14751-14757.	13.7	207
20	Electrochemical oxidation of catecholamines in the presence of aromatic amines: interplay between inter- and intramolecular nucleophilic addition. Research on Chemical Intermediates, 2015, 41, 7151-7162.	2.7	2
21	Eco-friendly electrocatalytic oxidation of alcohols on a novel electro generated TEMPO-functionalized MCM-41 modified electrode. Green Chemistry, 2015, 17, 991-1000.	9.0	53
22	Mechanistic Study of the Electrocatalytic Oxidation of Alcohols by TEMPO and NHPI. ChemElectroChem, 2014, 1, 455-462.	3.4	66
23	Ethylenediamine-modified oriented MCM-41 at the electrode surface, cobalt adsorption ability and electrochemical performance. Dalton Transactions, 2014, 43, 4901.	3.3	16
24	Effect of β-cyclodextrin on intra and intermolecular Michael addition of some catechol derivatives. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 118, 695-701.	3.9	2
25	Voltammetric analysis of the possibility of derivatization of levodopa in the presence of aniline derivatives. Journal of the Iranian Chemical Society, 2013, 10, 1257-1262.	2.2	1
26	Electrochemical fabrication of electroactive ordered mesoporous electrode. Analyst, The, 2013, 138, 1740.	3.5	17
27	Hydroquinone functionalized oriented MCM-41 mesochannels at the electrode surface. Electrochimica Acta, 2013, 94, 198-205.	5.2	24
28	Kinetic Study of the Oxidation of Catechols in the Presence of N-Methylaniline. Journal of Chemistry, 2013, 2013, 1-5.	1.9	5
29	Cyclodextrin Based Spectral Changes. , 2013, , .		2
30	Electro-Organic Synthesis of New Esculetin Derivatives Based on 1,6-Conjugate Addition. Current Organic Chemistry, 2013, 17, 848-852.	1.6	4
31	Kinetic Study of the Oxidation of Quercetin and Catechin in the Absence and Presence of Nitrite Ion. Progress in Reaction Kinetics and Mechanism, 2012, 37, 311-320.	2.1	Ο
32	Electrochemical Oxidation of Catechols in the Presence of Dimethyl Phosphite. Progress in Reaction Kinetics and Mechanism, 2012, 37, 138-146.	2.1	2
33	Synthesis and characterization of three dinuclear complexes of AgI with 2,3-bis(2-pyridyl)pyrazine and derivated of trifluoromethyldiketonate ligands. Journal of Molecular Structure, 2012, 1022, 25-31.	3.6	5
34	A biologically relevant iron(III) phenoxyl radical complex: A thermodynamic investigation on the structure-radical stability relationship. Journal of Molecular Structure, 2012, 1022, 109-116.	3.6	4
35	Electrochemical study of the dication of porphyrins with carboxylic acids: Shift of the absorption bands compared to that of the redox potentials. Inorganic Chemistry Communication, 2012, 22, 48-53.	3.9	19
36	Assembly of three binuclear complexes of Ag ^I with 2,3-bis(2-pyridyl)pyrazine and benzoyltrifluoroacetonate ligands. Journal of Coordination Chemistry, 2012, 65, 1882-1891.	2.2	10

#	Article	IF	CITATIONS
37	Electrochemical performance of a novel ionic liquid derived mesoporous carbon. Chemical Communications, 2012, 48, 2776.	4.1	31
38	Kinetic study of electrochemically induced CP bond formation of catechols with trialkylphosphites. Electrochimica Acta, 2012, 80, 56-59.	5.2	5
39	A chloro bridged Cu(II)–Cu(II) complex of a new aminophenol ligand: Magnetostructural, radical decay kinetic studies, highly efficient and aerial alcohol oxidation. Polyhedron, 2012, 47, 94-103.	2.2	17
40	Synthesis of arylidenepyruvic amide derivatives via Ugi-four component condensation. Tetrahedron Letters, 2012, 53, 3546-3549.	1.4	23
41	Investigation of the inclusion complex of β-cyclodextrin with mycophenolate mofetil. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2012, 90, 45-49.	3.9	6
42	Electrochemical oxidation of 4â€ <i>tert</i> â€butylcatechol in the presence of βâ€cyclodextrin: Interplay between E and CE mechanisms. International Journal of Chemical Kinetics, 2012, 44, 507-513.	1.6	1
43	Synthesis and structural characterization of new dinuclear silver(I) complexes: Different coordination modes of substituted 1,2,4-triazine ligands. Journal of Molecular Structure, 2011, 1006, 324-329.	3.6	13
44	Effect of inclusion complex on nitrous acid reaction with flavonoids. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2011, 81, 661-665.	3.9	1
45	CEC mechanism in electrochemical oxidation of nitrocatechol–boric acid complexes. Electrochimica Acta, 2011, 56, 9946-9952.	5.2	12
46	Voltammetric study of the oxidation of quercetin and catechin in the presence of cyanide ion. Research on Chemical Intermediates, 2011, 37, 1047-1055.	2.7	11
47	Electrochemical dimerization of 4-methylesculetin: Synthesis and kinetic study of a highly-oxygenated dimer. Journal of Electroanalytical Chemistry, 2011, 650, 226-232.	3.8	38
48	Kinetic study of the oxidation and nitration of catechols in the presence of nitrous acid ionization equilibria. Journal of Hazardous Materials, 2010, 174, 801-806.	12.4	24
49	Synthesis, properties and crystal structures of new binuclear lead(II) complexes based on phenyl, naphthyl-containing fluorine β-diketones and substituted 2,2′-bipyridines. Inorganica Chimica Acta, 2010, 363, 4000-4007.	2.4	30
50	The electrochemical study of catecholamine reactions in the presence of nitrite ion under mild acidic conditions. Electrochimica Acta, 2010, 55, 1809-1813.	5.2	13
51	Electrochemical oxidation of catechols in the presence of cyanoacetone and methyl cyanoacetate. Journal of Electroanalytical Chemistry, 2009, 626, 36-41.	3.8	24
52	Mechanistic study of homogeneous reactions coupled with electrochemical oxidation of catechols. Journal of the Iranian Chemical Society, 2009, 6, 448-476.	2.2	68
53	Electrochemical study of catechol–boric acid complexes. Electrochimica Acta, 2008, 53, 2751-2756.	5.2	29
54	Electrochemical Oxidation of 4-Methylcatechol in the Presence of β-Diketones. Bulletin of the Chemical Society of Japan, 2008, 81, 1505-1511.	3.2	7

#	Article	IF	CITATIONS
55	The Electron: The Simplest Chemical Reagent. Synlett, 2007, 2007, 0503-0504.	1.8	15
56	One-Pot Synthesis of Highly Conjugated Benzofuran Derivatives Based on Electrochemical Oxidation of Benzenediols in the Presence of Dibenzoylmethane. Chemical and Pharmaceutical Bulletin, 2007, 55, 915-917.	1.3	8
57	Voltammetry of Electroinactive Species Using Quinone/Hydroquinone Redox: A Known Redox System Viewed in a New Perspective. Electroanalysis, 2007, 19, 1382-1386.	2.9	49
58	Electrochemical nitration of catechols: Kinetic study by digital simulation of cyclic voltammograms. Journal of Electroanalytical Chemistry, 2007, 602, 37-42.	3.8	32
59	Kinetic study of electrochemically induced Michael reactions ofo-benzoquinones with 2-acetylcyclohexanone and 2-acetylcyclopentanone. Journal of Physical Organic Chemistry, 2007, 20, 49-54.	1.9	14
60	Kinetic study of the oxidation of some catecholamines by digital simulation of cyclic voltammograms. International Journal of Chemical Kinetics, 2005, 37, 17-24.	1.6	57
61	Diversity in electrochemical oxidation of dihydroxybenzoic acids in the presence of acetylacetone. A green method for synthesis of new benzofuran derivatives. Green Chemistry, 2005, 7, 638.	9.0	95
62	A Facile Electrochemical Method for Synthesis of New Benzofuran Derivatives ChemInform, 2004, 35, no.	0.0	0
63	Mechanistic study of electrochemical oxidation of 4-tert-butylcatechol. Electrochimica Acta, 2004, 49, 2495-2502.	5.2	90
64	Electrochemical oxidation of catechols in the presence of acetylacetone. Journal of Electroanalytical Chemistry, 2004, 566, 31-37.	3.8	91
65	Investigation of the electro-oxidation and oxidation of catechol in the presence of sulfanilic acid. Research on Chemical Intermediates, 2004, 30, 299-309.	2.7	26
66	A Facile Electrochemical Method for Synthesis of New Benzofuran Derivatives. Journal of Organic Chemistry, 2004, 69, 2637-2640.	3.2	105
67	Catalytic Oxidation of Thiourea at Alumina Modified Pt Electrode. Sensors, 2003, 3, 534-543.	3.8	17
68	Electrocatalytic Detection of Ethanol and Acetaldehyde by Aminoxyl Radicals: Utilizing Molecular Catalysis for Breath Analysis. Analyst, The, 0, , .	3.5	4