List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4944721/publications.pdf Version: 2024-02-01

HANC YIN

#	Article	IF	CITATIONS
1	Protocol for evaluation and validation of TLR8 antagonists in HEK-Blue cells via secreted embryonic alkaline phosphatase assay. STAR Protocols, 2022, 3, 101061.	1.2	3
2	ZDHHC18 negatively regulates cGASâ€mediated innate immunity through palmitoylation. EMBO Journal, 2022, 41, e109272.	7.8	26
3	MARCH8 attenuates cGAS-mediated innate immune responses through ubiquitylation. Science Signaling, 2022, 15, eabk3067.	3.6	17
4	Small molecule SMU-CX24 targeting toll-like receptor 3 counteracts inflammation: A novel approach to atherosclerosis therapy. Acta Pharmaceutica Sinica B, 2022, 12, 3667-3681.	12.0	7
5	Efficient Fabrication of Diverse Mesostructured Materials from the Self-Assembly of Pyrrole-Containing Block Copolymers and Their Confined Chemical Transformation. Macromolecules, 2021, 54, 906-918.	4.8	8
6	Orthosteric–allosteric dual inhibitors of PfHT1 as selective antimalarial agents. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	17
7	SARS-CoV-2 spike protein interacts with and activates TLR41. Cell Research, 2021, 31, 818-820.	12.0	225
8	Urban Region Function Mining Service Based on Social Media Text Analysis. International Journal of Software Engineering and Knowledge Engineering, 2021, 31, 563-586.	0.8	3
9	Design, Synthesis, and Structure–Activity Relationship of <i>N</i> -Aryl- <i>N</i> â€2-(thiophen-2-yl)thiourea Derivatives as Novel and Specific Human TLR1/2 Agonists for Potential Cancer Immunotherapy. Journal of Medicinal Chemistry, 2021, 64, 7371-7389.	6.4	20
10	Tetrasubstituted imidazoles as incognito Toll-like receptor 8 a(nta)gonists. Nature Communications, 2021, 12, 4351.	12.8	12
11	Photoactivation of Innate Immunity Receptor TLR8 in Live Mammalian Cells by Genetic Encoding of Photocaged Tyrosine. ChemBioChem, 2021, , .	2.6	3
12	Harnessing the therapeutic potential of extracellular vesicles for cancer treatment. Seminars in Cancer Biology, 2021, 74, 92-104.	9.6	9
13	TLR4 biased small molecule modulators. , 2021, 228, 107918.		29
14	SARS-CoV-2 nucleocapsid protein undergoes liquid–liquid phase separation into stress granules through its N-terminal intrinsically disordered region. Cell Discovery, 2021, 7, 5.	6.7	66
15	Design and optimisation of a small-molecule TLR2/4 antagonist for anti-tumour therapy. RSC Medicinal Chemistry, 2021, 12, 1771-1779.	3.9	0
16	An API Learning Service for Inexperienced Developers Based on API Knowledge Graph. , 2021, , .		3
17	Sensing of HIV-1 by TLR8 activates human T cells and reverses latency. Nature Communications, 2020, 11, 147.	12.8	62
18	Discovery of Small-Molecule Cyclic GMP-AMP Synthase Inhibitors. Journal of Organic Chemistry, 2020, 85, 1579-1600.	3.2	48

#	Article	IF	CITATIONS
19	Immune profiling before treatment is predictive of TLR9-induced antitumor efficacy. Biomaterials, 2020, 263, 120379.	11.4	0
20	Structural Basis for Blocking Sugar Uptake into the Malaria Parasite Plasmodium falciparum. Cell, 2020, 183, 258-268.e12.	28.9	42
21	How does an RNA selfie work? EVâ€associated RNA in innate immunity as self or danger. Journal of Extracellular Vesicles, 2020, 9, 1793515.	12.2	10
22	Multifunctional Integrated Compartment Systems for Incompatible Cascade Reactions Based on Onion-Like Photonic Spheres. Journal of the American Chemical Society, 2020, 142, 20605-20615.	13.7	22
23	The future of Extracellular Vesicles as Theranostics – an ISEV meeting report. Journal of Extracellular Vesicles, 2020, 9, 1809766.	12.2	77
24	Switch Off "Parallel Circuit†Insight of New Strategy of Simultaneously Suppressing Canonical and Noncanonical Inflammation Activation in Endotoxemic Mice. Advanced Biology, 2020, 4, 2000037.	3.0	5
25	Regulation of aerobic glycolysis to decelerate tumor proliferation by small molecule inhibitors targeting glucose transporters. Protein and Cell, 2020, 11, 446-451.	11.0	5
26	Small-Molecule Modulators of Toll-like Receptors. Accounts of Chemical Research, 2020, 53, 1046-1055.	15.6	122
27	TLR8 and complement C5 induce cytokine release and thrombin activation in human whole blood challenged with Gram-positive bacteria. Journal of Leukocyte Biology, 2020, 107, 673-683.	3.3	9
28	NLRP6 self-assembles into a linear molecular platform following LPS binding and ATP stimulation. Scientific Reports, 2020, 10, 198.	3.3	23
29	Rationally Designed Small-Molecule Inhibitors Targeting an Unconventional Pocket on the TLR8 Protein–Protein Interface. Journal of Medicinal Chemistry, 2020, 63, 4117-4132.	6.4	18
30	Extracellular vesicles derived from ODN-stimulated macrophages transfer and activate Cdc42 in recipient cells and thereby increase cellular permissiveness to EV uptake. Science Advances, 2019, 5, eaav1564.	10.3	26
31	Biological membranes in EV biogenesis, stability, uptake, and cargo transfer: an ISEV position paper arising from the ISEV membranes and EVs workshop. Journal of Extracellular Vesicles, 2019, 8, 1684862.	12.2	177
32	Discovery of Novel Small Molecule Dual Inhibitors Targeting Toll-Like Receptors 7 and 8 . Journal of Medicinal Chemistry, 2019, 62, 10221-10244.	6.4	13
33	Lovastatin inhibits Toll-like receptor 4 signaling in microglia by targeting its co-receptor myeloid differentiation protein 2 and attenuates neuropathic pain. Brain, Behavior, and Immunity, 2019, 82, 432-444.	4.1	37
34	Photoactivatable Prodrug of Doxazolidine Targeting Exosomes. Journal of Medicinal Chemistry, 2019, 62, 1959-1970.	6.4	12
35	Human Toll-like Receptor 8 (TLR8) Is an Important Sensor of Pyogenic Bacteria, and Is Attenuated by Cell Surface TLR Signaling. Frontiers in Immunology, 2019, 10, 1209.	4.8	49
36	TLR1/2 Specific Smallâ€Molecule Agonist Suppresses Leukemia Cancer Cell Growth by Stimulating Cytotoxic T Lymphocytes. Advanced Science, 2019, 6, 1802042.	11.2	42

#	Article	IF	CITATIONS
37	Brain Functional Networks Study of Subacute Stroke Patients With Upper Limb Dysfunction After Comprehensive Rehabilitation Including BCI Training. Frontiers in Neurology, 2019, 10, 1419.	2.4	40
38	Focusing on the Influenza Virus Polymerase Complex: Recent Progress in Drug Discovery and Assay Development. Current Medicinal Chemistry, 2019, 26, 2243-2263.	2.4	25
39	Small-molecule inhibition of TLR8 through stabilization of its resting state. Nature Chemical Biology, 2018, 14, 58-64.	8.0	97
40	DREADDed microglia in pain: Implications for spinal inflammatory signaling in male rats. Experimental Neurology, 2018, 304, 125-131.	4.1	79
41	Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 2018, 7, 1535750.	12.2	6,961
42	An iterative computational design approach to increase the thermal endurance of a mesophilic enzyme. Biotechnology for Biofuels, 2018, 11, 189.	6.2	11
43	Small-Molecule TLR8 Antagonists via Structure-Based Rational Design. Cell Chemical Biology, 2018, 25, 1286-1291.e3.	5.2	34
44	Discovery of Novel Small-Molecule Inhibitors of NF-κB Signaling with Antiinflammatory and Anticancer Properties. Journal of Medicinal Chemistry, 2018, 61, 5881-5899.	6.4	21
45	TLR4-dependent fibroblast activation drives persistent organ fibrosis in skin and lung. JCI Insight, 2018, 3, .	5.0	77
46	Small-Molecule TLR8 Antagonists And The Human Immune System. , 2018, , .		0
47	Non-steroidal Anti-inflammatory Drugs Are Caspase Inhibitors. Cell Chemical Biology, 2017, 24, 281-292.	5.2	64
48	Rationally Designed Peptide Probes for Extracellular Vesicles. Advances in Clinical Chemistry, 2017, 79, 25-41.	3.7	2
49	Toll-Like Receptor-4 Signaling Drives Persistent Fibroblast Activation and Prevents Fibrosis Resolution in Scleroderma. Advances in Wound Care, 2017, 6, 356-369.	5.1	55
50	Computational Design of Membrane Curvature-Sensing Peptides. Methods in Molecular Biology, 2017, 1529, 417-437.	0.9	2
51	Discovery of Small Molecules as Multi-Toll-like Receptor Agonists with Proinflammatory and Anticancer Activities. Journal of Medicinal Chemistry, 2017, 60, 5029-5044.	6.4	47
52	Small Molecule and Peptide Recognition of Protein Transmembrane Domains. Biochemistry, 2017, 56, 2076-2085.	2.5	8
53	Polymer-Based Purification of Extracellular Vesicles. Methods in Molecular Biology, 2017, 1660, 91-103.	0.9	34
54	Concise Review: Developing Best-Practice Models for the Therapeutic Use of Extracellular Vesicles. Stem Cells Translational Medicine, 2017, 6, 1730-1739.	3.3	247

#	Article	IF	CITATIONS
55	A polar SxxS motif drives assembly of the transmembrane domains of Toll-like receptor 4. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 2086-2095.	2.6	12
56	Updating the MISEV minimal requirements for extracellular vesicle studies: building bridges to reproducibility. Journal of Extracellular Vesicles, 2017, 6, 1396823.	12.2	185
57	Peptides derived from MARCKS block coagulation complex assembly on phosphatidylserine. Scientific Reports, 2017, 7, 4275.	3.3	14
58	Supramolecular Membrane Chemistry. , 2017, , 311-328.		4
59	Pharmacological characterization of the opioid inactive isomers (+)â€naltrexone and (+)â€naloxone as antagonists of tollâ€like receptor 4. British Journal of Pharmacology, 2016, 173, 856-869.	5.4	128
60	Lipid-Targeting Peptide Probes for Extracellular Vesicles. Journal of Cellular Physiology, 2016, 231, 2327-2332.	4.1	7
61	Pyrimidine Triazole Thioether Derivatives as Toll‣ike Receptorâ€5 (TLR5)/Flagellin Complex Inhibitors. ChemMedChem, 2016, 11, 822-826.	3.2	28
62	Directly Activating the Integrin αIIbβ3 Initiates Outside-In Signaling by Causing αIIbβ3 Clustering. Journal of Biological Chemistry, 2016, 291, 11706-11716.	3.4	26
63	Determinants of Curvature-Sensing Behavior for MARCKS-Fragment Peptides. Biophysical Journal, 2016, 110, 1980-1992.	0.5	8
64	HMGB1 Activates Proinflammatory Signaling via TLR5 Leading to Allodynia. Cell Reports, 2016, 17, 1128-1140.	6.4	125
65	Morphine paradoxically prolongs neuropathic pain in rats by amplifying spinal NLRP3 inflammasome activation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3441-50.	7.1	292
66	Evaluation of TLR4 Inhibitor, T5342126, in Modulation of Ethanol-Drinking Behavior in Alcohol-Dependent Mice. Alcohol and Alcoholism, 2016, 51, 541-548.	1.6	33
67	Chemical Biology Probes for Extracellular Vesicles Facilitate Studies of Neuroinflammation. ACS Chemical Neuroscience, 2016, 7, 418-419.	3.5	3
68	Drugging Membrane Protein Interactions. Annual Review of Biomedical Engineering, 2016, 18, 51-76.	12.3	237
69	A magnetic protein biocompass. Nature Materials, 2016, 15, 217-226.	27.5	250
70	A mitochondria-targeted ratiometric two-photon fluorescent probe for biological zinc ions detection. Biosensors and Bioelectronics, 2016, 77, 921-927.	10.1	42
71	Therapeutic Developments Targeting Tollâ€like Receptorâ€4â€Mediated Neuroinflammation. ChemMedChem, 2016, 11, 154-165.	3.2	64
72	Comparing Residue Clusters from Thermophilic and Mesophilic Enzymes Reveals Adaptive Mechanisms. PLoS ONE, 2016, 11, e0145848.	2.5	21

#	Article	IF	CITATIONS
73	Pyridoxamine is a substrate of the energy-coupling factor transporter HmpT. Cell Discovery, 2015, 1, 15014.	6.7	6
74	Specific activation of the TLR1-TLR2 heterodimer by small-molecule agonists. Science Advances, 2015, 1, .	10.3	72
75	Structure–Activity Relationships of (+)-Naltrexone-Inspired Toll-like Receptor 4 (TLR4) Antagonists. Journal of Medicinal Chemistry, 2015, 58, 5038-5052.	6.4	77
76	DAT isn't all that: cocaine reward and reinforcement require Toll-like receptor 4 signaling. Molecular Psychiatry, 2015, 20, 1525-1537.	7.9	178
77	Caspases come together over LPS. Trends in Immunology, 2015, 36, 59-61.	6.8	17
78	A lysine-rich motif in the phosphatidylserine receptor PSR-1 mediates recognition and removal of apoptotic cells. Nature Communications, 2015, 6, 5717.	12.8	33
79	Expression and functionality of Tollâ€like receptorÂ3 in the megakaryocytic lineage. Journal of Thrombosis and Haemostasis, 2015, 13, 839-850.	3.8	65
80	Targeting proteinâ^'protein interfaces using macrocyclic peptides. Biopolymers, 2015, 104, 310-316.	2.4	58
81	A two-photon fluorescent probe for detecting endogenous hypochlorite in living cells. Dalton Transactions, 2015, 44, 6613-6619.	3.3	40
82	A ratiometric two-photon fluorescent probe for hydrazine and its applications. Sensors and Actuators B: Chemical, 2015, 220, 1338-1345.	7.8	63
83	Activation of MyD88-dependent TLR1/2 signaling by misfolded α-synuclein, a protein linked to neurodegenerative disorders. Science Signaling, 2015, 8, ra45.	3.6	228
84	Curvature sensing MARCKSâ€ED peptides bind to membranes in a stereoâ€independent manner. Journal of Peptide Science, 2015, 21, 577-585.	1.4	9
85	MARCKS ED Inhibits Fibrin Formation By Blocking Coagulation Protein Complex Assembly on Phosphatidylserine. Blood, 2015, 126, 2272-2272.	1.4	0
86	The Development of Antimicrobial αâ€AApeptides that Suppress Proinflammatory Immune Responses. ChemBioChem, 2014, 15, 688-694.	2.6	18
87	Exosomes and Microvesicles: Identification and Targeting By Particle Size and Lipid Chemical Probes. ChemBioChem, 2014, 15, 923-928.	2.6	137
88	Biophysical investigations with MARCKS-ED: dissecting the molecular mechanism of its curvature sensing behaviors. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 3137-3144.	2.6	15
89	Activation of adult rat CNS endothelial cells by opioid-induced toll-like receptor 4 (TLR4) signaling induces proinflammatory, biochemical, morphological, and behavioral sequelae. Neuroscience, 2014, 280, 299-317.	2.3	56
90	Short Antimicrobial Lipoâ€Î±/γâ€AA Hybrid Peptides. ChemBioChem, 2014, 15, 2275-2280.	2.6	44

#	Article	IF	CITATIONS
91	Rationally designed macrocyclic peptides as synergistic agonists ofÂLPS-induced inflammatory response. Tetrahedron, 2014, 70, 7664-7668.	1.9	15
92	Saccharin Derivatives as Inhibitors of Interferon-Mediated Inflammation. Journal of Medicinal Chemistry, 2014, 57, 5348-5355.	6.4	32
93	Lipidated Cyclic γ-AApeptides Display Both Antimicrobial and Anti-inflammatory Activity. ACS Chemical Biology, 2014, 9, 211-217.	3.4	64
94	Acute Stressor Exposure Modifies Plasma Exosome-Associated Heat Shock Protein 72 (Hsp72) and microRNA (miR-142-5p and miR-203). PLoS ONE, 2014, 9, e108748.	2.5	57
95	Changes in lipid density induce membrane curvature. RSC Advances, 2013, 3, 13622.	3.6	13
96	Engineering and Utilization of Reporter Cell Lines for Cell-Based Assays of Transmembrane Receptors. Methods in Molecular Biology, 2013, 1063, 211-225.	0.9	0
97	MARCKS-ED Peptide as a Curvature and Lipid Sensor. ACS Chemical Biology, 2013, 8, 218-225.	3.4	54
98	Rifampin inhibits Tollâ€like receptor 4 signaling by targeting myeloid differentiation protein 2 and attenuates neuropathic pain. FASEB Journal, 2013, 27, 2713-2722.	0.5	63
99	Multivalency amplifies the selection and affinity of bradykinin-derived peptides for lipid nanovesicles. Molecular BioSystems, 2013, 9, 2005.	2.9	19
100	PNA-based microRNA inhibitors elicit anti-inflammatory effects in microglia cells. Chemical Communications, 2013, 49, 4415-4417.	4.1	32
101	Targeting Toll-like receptors with small molecule agents. Chemical Society Reviews, 2013, 42, 4859.	38.1	98
102	Computationally Designed Peptide Inhibitors of the Ubiquitin E3 Ligase SCF ^{Fbx4} . ChemBioChem, 2013, 14, 445-451.	2.6	7
103	Toll-like receptors as therapeutic targets for autoimmune connective tissue diseases. , 2013, 138, 441-451.		107
104	Protein engineering methods applied to membrane protein targets. Protein Engineering, Design and Selection, 2013, 26, 91-100.	2.1	24
105	Constant Pressure-controlled Extrusion Method for the Preparation of Nano-sized Lipid Vesicles. Journal of Visualized Experiments, 2012, , .	0.3	21
106	Opioid Activation of Toll-Like Receptor 4 Contributes to Drug Reinforcement. Journal of Neuroscience, 2012, 32, 11187-11200.	3.6	258
107	Targeting the lateral interactions of transmembrane domain 5 of Epstein–Barr virus latent membrane protein 1. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 2282-2289.	2.6	14
108	Toll-like receptor (TLR) 3 as a surrogate sensor of retroviral infection in human cells. Biochemical and Biophysical Research Communications, 2012, 424, 519-523.	2.1	5

#	Article	IF	CITATIONS
109	Discovery of Smallâ€Molecule Inhibitors of the TLR1/TLR2 Complex. Angewandte Chemie - International Edition, 2012, 51, 12246-12249.	13.8	126
110	Neuroexcitatory effects of morphine-3-glucuronide are dependent on Toll-like receptor 4 signaling. Journal of Neuroinflammation, 2012, 9, 200.	7.2	95
111	Selection, synthesis, and anti-inflammatory evaluation of the arylidene malonate derivatives as TLR4 signaling inhibitors. Bioorganic and Medicinal Chemistry, 2012, 20, 6073-6079.	3.0	26
112	Isolated Toll-like Receptor Transmembrane Domains Are Capable of Oligomerization. PLoS ONE, 2012, 7, e48875.	2.5	66
113	Constrained Peptides as Miniature Protein Structures. , 2012, 2012, 1-15.		11
114	Morphine activates neuroinflammation in a manner parallel to endotoxin. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6325-6330.	7.1	401
115	Detection of Highly Curved Membrane Surfaces Using a Cyclic Peptide Derived from Synaptotagmin-I. ACS Chemical Biology, 2012, 7, 1629-1635.	3.4	31
116	Repositioning Antimicrobial Agent Pentamidine as a Disruptor of the Lateral Interactions of Transmembrane Domain 5 of EBV Latent Membrane Protein 1. PLoS ONE, 2012, 7, e47703.	2.5	9
117	The BH3 α-Helical Mimic BH3-M6 Disrupts Bcl-XL, Bcl-2, and MCL-1 Protein-Protein Interactions with Bax, Bak, Bad, or Bim and Induces Apoptosis in a Bax- and Bim-dependent Manner. Journal of Biological Chemistry, 2011, 286, 9382-9392.	3.4	105
118	Development of β-Amino Alcohol Derivatives That Inhibit Toll-like Receptor 4 Mediated Inflammatory Response as Potential Antiseptics. Journal of Medicinal Chemistry, 2011, 54, 4659-4669.	6.4	30
119	Small-Molecule Inhibitors of the TLR3/dsRNA Complex. Journal of the American Chemical Society, 2011, 133, 3764-3767.	13.7	117
120	Multi-Tox: Application of the ToxR-transcriptional reporter assay to the study of multi-pass protein transmembrane domain oligomerization. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 2948-2953.	2.6	11
121	The effects of early rapid corticosteroid reduction on cell-mediated immunity in kidney transplant recipients. Transplant Immunology, 2011, 24, 127-130.	1.2	4
122	Transmembrane Domain Oligomerization Propensity determined by ToxR Assay. Journal of Visualized Experiments, 2011, , .	0.3	8
123	Transmembrane peptides used to investigate the homo-oligomeric interface and binding hot-spot of latent membrane protein 1. Biopolymers, 2011, 95, n/a-n/a.	2.4	19
124	An MD2 Hotâ€Spotâ€Mimicking Peptide that Suppresses TLR4â€Mediated Inflammatory Response in vitro and in vivo. ChemBioChem, 2011, 12, 1827-1831.	2.6	13
125	Inside Cover: An MD2 Hotâ€Spotâ€Mimicking Peptide that Suppresses TLR4â€Mediated Inflammatory Response in vitro and in vivo (ChemBioChem 12/2011). ChemBioChem, 2011, 12, 1786-1786.	2.6	0
126	Development of Agents that Modulate Protein-Protein Interactions in Membranes. Current Pharmaceutical Design, 2010, 16, 1055-1062.	1.9	8

#	Article	IF	CITATIONS
127	Selection, Preparation, and Evaluation of Small-Molecule Inhibitors of Toll-Like Receptor 4. ACS Medicinal Chemistry Letters, 2010, 1, 194-198.	2.8	26
128	Application of a novel in silico high-throughput screen to identify selective inhibitors for protein–protein interactions. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 5411-5413.	2.2	34
129	Tollâ€like receptor 4 in CNS pathologies. Journal of Neurochemistry, 2010, 114, 13-27.	3.9	279
130	Kallistatin Inhibits Vascular Inflammation by Antagonizing Tumor Necrosis Factor-α–Induced Nuclear Factor κB Activation. Hypertension, 2010, 56, 260-267.	2.7	65
131	Evidence that opioids may have toll-like receptor 4 and MD-2 effects. Brain, Behavior, and Immunity, 2010, 24, 83-95.	4.1	447
132	Possible involvement of toll-like receptor 4/myeloid differentiation factor-2 activity of opioid inactive isomers causes spinal proinflammation and related behavioral consequences. Neuroscience, 2010, 167, 880-893.	2.3	115
133	Evidence that tricyclic small molecules may possess toll-like receptor and myeloid differentiation protein 2 activity. Neuroscience, 2010, 168, 551-563.	2.3	85
134	Understanding Membrane Proteins. How to Design Inhibitors of Transmembrane Protein—Protein Interactions. Nucleic Acids and Molecular Biology, 2009, , 315-337.	0.2	1
135	A Peptide Antagonist of the TLR4–MD2 Interaction. ChemBioChem, 2009, 10, 645-649.	2.6	41
136	Using Two Fluorescent Probes to Dissect the Binding, Insertion, and Dimerization Kinetics of a Model Membrane Peptide. Journal of the American Chemical Society, 2009, 131, 3816-3817.	13.7	47
137	Exogenous Agents that Target Transmembrane Domains of Proteins. Angewandte Chemie - International Edition, 2008, 47, 2744-2752.	13.8	21
138	Cover Picture: Exogenous Agents that Target Transmembrane Domains of Proteins (Angew. Chem. Int.) Tj ETQq0	0 0 rgBT / 13.8	Oyerlock 10
139	Role of kallistatin in prevention of cardiac remodeling after chronic myocardial infarction. Laboratory Investigation, 2008, 88, 1157-1166.	3.7	54
140	Design, Synthesis, and Evaluation of Biotinylated Opioid Derivatives as Novel Probes to Study Opioid Pharmacology. Bioconjugate Chemistry, 2008, 19, 2585-2589.	3.6	8
141	Nitric oxide mediates cardiac protection of tissue kallikrein by reducing inflammation and ventricular remodeling after myocardial ischemia/reperfusion. Life Sciences, 2008, 82, 156-165.	4.3	44
142	Peptide Probes for Protein Transmembrane Domains. ACS Chemical Biology, 2008, 3, 402-411.	3.4	12
143	Computationally Designed Peptide Inhibitors of Proteinâ~'Protein Interactions in Membranes. Biochemistry, 2008, 47, 8600-8606.	2.5	61

Computational Design of Peptides That Target Transmembrane Helices. Science, 2007, 315, 1817-1822. 12.6 271

#	Article	IF	CITATIONS
145	Differential role of kinin B1 and B2 receptors in ischemia-induced apoptosis and ventricular remodeling. Peptides, 2007, 28, 1383-1389.	2.4	41
146	The leech product saratin is a potent inhibitor of platelet integrin α2β1 and von Willebrand factor binding to collagen. FEBS Journal, 2007, 274, 1481-1491.	4.7	31
147	Arylamide Derivatives as Peptidomimetic Inhibitors of Calmodulin. Organic Letters, 2006, 8, 223-225.	4.6	39
148	Arylamide derivatives as allosteric inhibitors of the integrin α2β1/type I collagen interaction. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 3380-3382.	2.2	18
149	Novel Role of Kallistatin in Protection Against Myocardial Ischemia–Reperfusion Injury by Preventing Apoptosis and Inflammation. Human Gene Therapy, 2006, 17, 1201-1213.	2.7	74
150	Activation of Platelet αllbβ3 by an Exogenous Peptide Corresponding to the Transmembrane Domain of αllb*. Journal of Biological Chemistry, 2006, 281, 36732-36741.	3.4	49
151	Regulation of the Function of αvβ3 in Platelets by a Designed Peptide Targeting the αv Transmembrane Domain Blood, 2006, 108, 1504-1504.	1.4	7
152	Strategies for Targeting Protein-Protein Interactions With Synthetic Agents. Angewandte Chemie - International Edition, 2005, 44, 4130-4163.	13.8	422
153	Terphenyl-Based Helical Mimetics That Disrupt the p53/HDM2 Interaction. Angewandte Chemie - International Edition, 2005, 44, 2704-2707.	13.8	233
154	Strategies for Targeting Protein—Protein Interactions with Synthetic Agents. ChemInform, 2005, 36, no.	0.0	1
155	Kallikrein/Kinin Protects against Myocardial Apoptosis after Ischemia/Reperfusion via Akt-Glycogen Synthase Kinase-3 and Akt-Bad·14-3-3 Signaling Pathways. Journal of Biological Chemistry, 2005, 280, 8022-8030.	3.4	105
156	p53 α-Helix mimetics antagonize p53/MDM2 interaction and activate p53. Molecular Cancer Therapeutics, 2005, 4, 1019-1025.	4.1	95
157	Terephthalamide Derivatives as Mimetics of Helical Peptides:Â Disruption of the Bcl-xL/Bak Interaction. Journal of the American Chemical Society, 2005, 127, 5463-5468.	13.7	133
158	Terphenyl-Based Bak BH3 α-Helical Proteomimetics as Low-Molecular-Weight Antagonists of Bcl-xL. Journal of the American Chemical Society, 2005, 127, 10191-10196.	13.7	194
159	Activation of Platelet α libβ 3 by Exogenous Peptides Corresponding to the Transmembrane Domains of α lib and β 3 Blood, 2005, 106, 384-384.	1.4	4
160	Adrenomedullin Protects Against Myocardial Apoptosis After Ischemia/Reperfusion Through Activation of Akt-GSK Signaling. Hypertension, 2004, 43, 109-116.	2.7	121
161	Terephthalamide derivatives as mimetics of the helical region of Bak peptide target Bcl-xL protein. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 1375-1379.	2.2	66
162	Title is missing!. Angewandte Chemie, 2003, 115, 553-557.	2.0	57

#	Article	IF	CITATIONS
163	Design and Application of an α-Helix-Mimetic Scaffold Based on an Oligoamide-Foldamer Strategy: Antagonism of the Bak BH3/Bcl-xL Complex. Angewandte Chemie - International Edition, 2003, 42, 535-539.	13.8	253
164	Development of a Potent Bcl-xLAntagonist Based on α-Helix Mimicry. Journal of the American Chemical Society, 2002, 124, 11838-11839.	13.7	254
165	Directional specificity in the regeneration of lamprey spinal axons. Science, 1984, 224, 894-896.	12.6	46
166	Alpha-Helix Mimetics in Drug Discovery. , 0, , 281-299.		10
167	A Candidate Drug Screen Strategy: The Discovery of Oroxylin A in Scutellariae Radix Against Sepsis via the Correlation Analysis Between Plant Metabolomics and Pharmacodynamics. Frontiers in Pharmacology, 0, 13, .	3.5	3