
Takashi Ikuno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4944080/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	lsotope Effect on the Thermal Conductivity of Boron Nitride Nanotubes. Physical Review Letters, 2006, 97, 085901.	7.8	349
2	Self-Assembly of Gold Nanoparticles at the Surface of Amine- and Thiol-Functionalized Boron Nitride Nanotubes. Journal of Physical Chemistry C, 2007, 111, 12992-12999.	3.1	179
3	Amine-functionalized boron nitride nanotubes. Solid State Communications, 2007, 142, 643-646.	1.9	139
4	Preparation of Alkyl-Modified Silicon Nanosheets by Hydrosilylation of Layered Polysilane (Si ₆ H ₆). Journal of the American Chemical Society, 2012, 134, 5452-5455.	13.7	119
5	SnS thin film solar cells with Zn1â^'xMgxO buffer layers. Applied Physics Letters, 2013, 102, .	3.3	111
6	Single-Walled Carbon Nanotube Thin-Film Sensor for Ultrasensitive Gas Detection. Japanese Journal of Applied Physics, 2005, 44, L482-L484.	1.5	83
7	Electron transport properties of Si nanosheets: Transition from direct tunneling to Fowler-Nordheim tunneling. Applied Physics Letters, 2011, 99, .	3.3	79
8	Electronic Transport in Multiwalled Carbon Nanotubes Contacted with Patterned Electrodes. Japanese Journal of Applied Physics, 2004, 43, L1081-L1084.	1.5	41
9	Ultrasensitive Ozone Detection Using Single-Walled Carbon Nanotube Networks. Japanese Journal of Applied Physics, 2006, 45, 3669-3671.	1.5	38
10	Soft chemical synthesis of silicon nanosheets and their applications. Applied Physics Reviews, 2016, 3, .	11.3	38
11	Metal-Coated Carbon Nanotube Tip for Scanning Tunneling Microscope. Japanese Journal of Applied Physics, 2004, 43, L644-L646.	1.5	36
12	Coating carbon nanotubes with inorganic materials by pulsed laser deposition. Journal of Applied Physics, 2005, 98, 114305.	2.5	34
13	Formation of Vertically Aligned Carbon Nanotubes by Dual-RF-Plasma Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2001, 40, L631-L634.	1.5	32
14	SiC nanofibers grown by high power microwave plasma chemical vapor deposition. Applied Surface Science, 2003, 212-213, 378-382.	6.1	30
15	Low Temperature Synthesis of Aligned Carbon Nanotubes by Inductively Coupled Plasma Chemical Vapor Deposition Using Pure Methane. Japanese Journal of Applied Physics, 2003, 42, L441-L443.	1.5	28
16	Thermally driven nanomechanical deflection of hybrid nanowires. Applied Physics Letters, 2005, 87, 213104.	3.3	25
17	Synthesis of aligned bamboo-like carbon nanotubes using radio frequency magnetron sputtering. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2003, 21, 1437.	1.6	24
18	Insulator-Coated Carbon Nanotubes Synthesized by Pulsed Laser Deposition. Japanese Journal of Applied Physics, 2003, 42, L1356-L1358.	1.5	24

Τακάσηι Ικύνο

#	Article	IF	CITATIONS
19	Selective Growth of Straight Carbon Nanotubes by Low-Pressure Thermal Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2004, 43, 860-863.	1.5	21
20	Growth of Single-Walled Carbon Nanotubes Rooted from Fe/Al Nanoparticle Array. Japanese Journal of Applied Physics, 2005, 44, 457-460.	1.5	21
21	Synthesis of randomly oriented carbon nanotubes on SiO2 substrates by thermal chemical vapor deposition toward field electron emitters. Thin Solid Films, 2004, 464-465, 290-294.	1.8	20
22	Electrical Characterization of Metal-Coated Carbon Nanotube Tips. Japanese Journal of Applied Physics, 2005, 44, L1563-L1566.	1.5	18
23	Correlation between Field Electron Emission and Structural Properties in Randomly and Vertically Oriented Carbon Nanotube Films. Japanese Journal of Applied Physics, 2005, 44, 1655-1660.	1.5	16
24	Exploiting Metal Coating of Carbon Nanotubes for Scanning Tunneling Microscopy Probes. Japanese Journal of Applied Physics, 2005, 44, 5336-5338.	1.5	15
25	Surface morphology and field emission characteristics of carbon nanofiber films grown by chemical vapor deposition on alloy catalyst. Applied Surface Science, 2003, 212-213, 383-387.	6.1	14
26	Field electron emission from amorphous carbon films grown in pure methane plasma. Applied Surface Science, 2002, 185, 243-247.	6.1	13
27	Highly aligned carbon nanotube arrays fabricated by bias sputtering. Applied Surface Science, 2003, 212-213, 393-396.	6.1	13
28	Effect of oxygen addition to methane on growth of vertically oriented carbon nanotubes by radio-frequency plasma-enhanced chemical-vapor deposition. Journal of Applied Physics, 2005, 97, 104329.	2.5	11
29	Fabrication and Characteristics of Amorphous Carbon Films Grown in Pure Methane Plasma by using Radio Frequency Plasma Enhanced Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2003, 42, 1744-1748.	1.5	10
30	Structural characterization of randomly and vertically oriented carbon nanotube films grown by chemical vapour deposition. Surface and Interface Analysis, 2003, 35, 15-18.	1.8	9
31	Local Etching of Insulator-Coated Carbon Nanotubes towards Passivated Nanoprobes. Japanese Journal of Applied Physics, 2004, 43, L987-L989.	1.5	9
32	Field emission from nanotubes and flakes of transition metal dichalcogenides. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2020, 38, 032801.	1.2	9
33	Large field emission from carbon nanotubes grown on patterned catalyst thin film by thermal chemical vapor deposition. Physica B: Condensed Matter, 2002, 323, 171-173.	2.7	8
34	Influence of Plasma State on the Structural Property of Vertically Oriented Carbon Nanotubes Grown by RF Plasma-Enhanced Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2003, 42, 6717-6720.	1.5	8
35	Influence of the Plasma Condition on the Morphology of Vertically Aligned Carbon Nanotube Films Grown by RF Plasma Chemical Vapor Deposition. Surface Review and Letters, 2003, 10, 611-615.	1.1	8
36	Characterization of low temperature growth carbon nanofibers synthesized by using plasma enhanced chemical vapor deposition. Vacuum, 2002, 66, 341-345.	3.5	7

Τακάση Ικύνο

#	Article	IF	CITATIONS
37	Method for Aligned Bamboolike Carbon Nanotube Growth Using RF Magnetron Sputtering. Japanese Journal of Applied Physics, 2003, 42, 713-715.	1.5	7
38	Synthesis of Nanostructured Hybrid between Carbon Nanotube and Inorganic Material towards Nanodevice Application. E-Journal of Surface Science and Nanotechnology, 2004, 2, 244-255.	0.4	7
39	Low-Temperature Growth of Carbon Nanofiber by Thermal Chemical Vapor Deposition Using CuNi Catalyst. Japanese Journal of Applied Physics, 2006, 45, 5329-5331.	1.5	7
40	Carbon Nanostructures Grown on Graphite Substrates without Catalyst by Pulsed Laser Deposition. Japanese Journal of Applied Physics, 2006, 45, 2872-2874.	1.5	6
41	Wavelength-dependent switching of photocurrent polarity in a semiconductor film with bifacial band bendings. Applied Physics Express, 2016, 9, 062201.	2.4	6
42	Dispersion of Carbon Nanotubes with "Green―Detergents. Molecules, 2021, 26, 2908.	3.8	6
43	Synthesis and Characterization of Carbon Nanotubes Grown on Carbon Particles by Using High Vacuum Laser Ablation Shinku/Journal of the Vacuum Society of Japan, 2002, 45, 609-612.	0.2	6
44	Freestanding Translucent ZnO–Cellulose Nanocomposite Films for Ultraviolet Sensor Applications. Nanomaterials, 2022, 12, 940.	4.1	6
45	Formation of Graphite Layers during Carbon Nanotubes Growth. Japanese Journal of Applied Physics, 2003, 42, 579-581.	1.5	5
46	Environment-friendly paper-based flexible pressure sensors with carbon nanotubes and liquid metal. Applied Physics Express, 2020, 13, 027001.	2.4	5
47	Carbon nanotube/polydimethylsiloxane composite micropillar arrays using non-lithographic silicon nanowires as a template for performance enhancement of triboelectric nanogenerators. Nanotechnology, 2021, 32, 095303.	2.6	5
48	Excitons at the B K edge of boron nitride nanotubes probed by x-ray absorption spectroscopy. Journal of Physics Condensed Matter, 2010, 22, 295301.	1.8	3
49	Bimorph micro heat engines based on carbon nanotube freestanding films. Applied Physics Express, 2015, 8, 115101.	2.4	3
50	Coating Carbon Nanotubes with Compound Ultrathin Film: A Novel Route to Functional SPM tips. E-Journal of Surface Science and Nanotechnology, 2005, 3, 417-420.	0.4	2
51	Resonant tunneling properties of SiO2/polycrystalline Si/SiO2 multilayers fabricated by radio-frequency magnetron sputtering. Journal of Applied Physics, 2015, 118, .	2.5	2
52	A light-driven flying balloon composed of carbon nanotube freestanding films. Applied Physics Express, 2019, 12, 047002.	2.4	2
53	Fabrication of Eutectic Ga-In Nanowire Arrays Based on Plateau–Rayleigh Instability. Molecules, 2021, 26, 4616.	3.8	1
54	Synthesis of inorganic thin-layer-coated carbon nanotubes toward passivated nanoprobes. , 2004, , .		0

Τακάσηι Ικύνο

#	Article	IF	CITATIONS
55	Highly Dispersed Iron Pyrite Quantum Dots in Volatile Solvent: A Facile Purification Method. Chemistry Letters, 2016, 45, 341-343.	1.3	0
56	Influence of Interface Metal on Field Emission from Carbon Film Hyomen Kagaku, 2000, 21, 502-506.	0.0	0
57	Vertically Aligned Carbon Nanotube Growth Using Density-Controlled Catalyst Nanoparticles. Shinku/Journal of the Vacuum Society of Japan, 2003, 46, 542-545.	0.2	0
58	Synthesis and Characterization of Nanostructured Thin Films for Field Emitter by Plasma Enhanced Chemical Vapor Deposition. Shinku/Journal of the Vacuum Society of Japan, 2003, 46, 302-305.	0.2	0
59	Carbon Nanotube Bridges between Metal Nanoparticles Synthesized by Thermal Chemical Vapor Deposition. Shinku/Journal of the Vacuum Society of Japan, 2003, 46, 497-500.	0.2	0