
Hyojin Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4942278/publications.pdf Version: 2024-02-01

HYOUN KIM

#	Article	IF	CITATIONS
1	Fabrication of Homogeneous Metal-Organic Hybrid Composite from Copper Containing Methacrylate Copolymer Through Layer-by-Layer Film Processing and e-Beam Irradiation. Macromolecular Research, 2018, 26, 466-471.	2.4	2
2	Fabrication and Characterization of CuO Thin Film/ZnO Nanorods Heterojunction Structure for Efficient Detection of NO Gas. Korean Journal of Materials Research, 2018, 28, 32-37.	0.2	2
3	Photoelectrochemical Properties of a Cu ₂ O Film/ZnO Nanorods Oxide p-n Heterojunction Photoelectrode for Solar-Driven Water Splitting. Korean Journal of Materials Research, 2018, 28, 214-220.	0.2	1
4	Electrochemical Performance of Li ₄ Ti ₅ O ₁₂ Particles Manufactured Using High Pressure Synthesis Process for Lithium Ion Battery. Korean Journal of Materials Research, 2018, 28, 337-342.	0.2	1
5	Fabrication and Characterization of CuO Nanoparticles/ZnO Nanorods Heterojunction Structure for Room Temperature NO Gas Sensor Application. Journal of Nanoscience and Nanotechnology, 2016, 16, 11608-11612.	0.9	4
6	A Hydrogen Sulfide Gas Sensor Based on Pd-Decorated ZnO Nanorods. Journal of Nanoscience and Nanotechnology, 2016, 16, 10351-10355.	0.9	17
7	Gas-Sensing Properties of ZnO Nanorods at Room Temperature Under Continuous UV Illumination in Humid Air. Journal of Nanoscience and Nanotechnology, 2016, 16, 10346-10350.	0.9	6
8	Surface gas sensing kinetics of a WO3 nanowire sensor: Part 2—Reducing gases. Sensors and Actuators B: Chemical, 2016, 224, 425-433.	7.8	47
9	Iron Oxide-Carbon Nanotube Composite for NH3 Detection. Korean Journal of Materials Research, 2016, 26, 187-193.	0.2	4
10	Rectifying and Nitrogen Monoxide Gas Sensing Properties of a Spin-Coated ZnO/CuO Heterojunction. Korean Journal of Materials Research, 2016, 26, 84-89.	0.2	1
11	Fabrication and Photoelectrochemical Properties of a Cu2O/CuO Heterojunction Photoelectrode for Hydrogen Production from Solar Water Splitting. Korean Journal of Materials Research, 2016, 26, 604-610.	0.2	3
12	Transparent Conductive Films of Copper Nanofiber Network Fabricated by Electrospinning. Journal of Nanomaterials, 2015, 2015, 1-8.	2.7	7
13	Growth and fabrication method of CdTe and its performance as a radiation detector. Journal of the Korean Physical Society, 2015, 66, 31-36.	0.7	9
14	Surface gas sensing kinetics of a WO3 nanowire sensor: part 1—oxidizing gases. Sensors and Actuators B: Chemical, 2015, 220, 932-941.	7.8	43
15	Porous Au-embedded WO3 Nanowire Structure for Efficient Detection of CH4 and H2S. Scientific Reports, 2015, 5, 11040.	3.3	135
16	Preparation of metal-ion containing polymers: Synthesis and characterization of methacryliccopolymers containing copper ion. Polymer, 2015, 77, 297-304.	3.8	5
17	Rectifying and NO Gas Sensing Properties of an Oxide Heterostructure with ZnO Nanorods Embedded in CuO Thin Film. Nanoscience and Nanotechnology Letters, 2015, 7, 758-762.	0.4	3
18	Detection of H2S Gas with CuO Nanowire Sensor. Korean Journal of Materials Research, 2015, 25, 238-246.	0.2	3

Нуојіл Кім

#	Article	IF	CITATIONS
19	Nitrogen Monoxide Gas Sensing Properties of Copper Oxide Thin Films Fabricated by a Spin Coating Method. Korean Journal of Materials Research, 2015, 25, 171-176.	0.2	1
20	Zinc Oxide Wire-Like Thin Films as Nitrogen Monoxide Gas Sensor. Korean Journal of Materials Research, 2015, 25, 358-363.	0.2	1
21	Zinc-oxide nanorod/copper-oxide thin-film heterojunction for a nitrogen-monoxide gas sensor. Journal of the Korean Physical Society, 2014, 65, 1653-1657.	0.7	1
22	Effect of an Au Nanodot Nucleation Layer on CO Gas Sensing Properties of Nanostructured SnO2Thin Films. Korean Journal of Materials Research, 2014, 24, 152-158.	0.2	1
23	Nitrogen Monoxide Gas Sensing Properties of CuO Nanorods Synthesized by a Hydrothermal Method. Korean Journal of Materials Research, 2014, 24, 19-24.	0.2	4
24	Electrochromic properties of porous WO3–TiO2 core–shell nanowires. Journal of Materials Chemistry C, 2013, 1, 3399.	5.5	73
25	Nitrogen Monoxide Gas Sensing Characteristics of Transparent p-type Semiconductor CuAlO2Thin Films. Korean Journal of Materials Research, 2013, 23, 477-482.	0.2	0
26	ZnO Hierarchical Nanostructures Fabricated by Electrospinning and Hydrothermal Methods for Photoelectrochemical Cell Electrodes. Korean Journal of Materials Research, 2013, 23, 655-660.	0.2	0
27	Hydrothermal Synthesis of ZnO Nanorods in the Presence of a Surfactant. Journal of Nanoscience and Nanotechnology, 2012, 12, 1328-1331.	0.9	2
28	Tin Oxide-Carbon Nanotube Composite for NO _{<i>X</i>} Sensing. Journal of Nanoscience and Nanotechnology, 2012, 12, 1425-1428.	0.9	26
29	Realization of an open space ensemble for nanowires: a strategy for the maximum response in resistive sensors. Journal of Materials Chemistry, 2012, 22, 6716.	6.7	60
30	Optimization of a zinc oxide urchin-like structure for high-performance gas sensing. Journal of Materials Chemistry, 2012, 22, 1127-1134.	6.7	73
31	Electrospun Non-Directional Zinc Oxide Nanofibers as Nitrogen Monoxide Gas Sensor. Korean Journal of Materials Research, 2012, 22, 609~614-609~614.	0.2	8
32	A simple fabrication method of randomly oriented polycrystalline zinc oxide nanowires and their application to gas sensing. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2011, 2, 015002.	1.5	6
33	Growth and optical properties of ZnO nanorods prepared through hydrothermal growth followed by chemical vapor deposition. Journal of Alloys and Compounds, 2011, 509, 5137-5141.	5.5	32
34	Polyaniline–chitosan nanocomposite: High performance hydrogen sensor from new principle. Sensors and Actuators B: Chemical, 2011, 160, 1020-1025.	7.8	40
35	Effect of Be codoping on the photoluminescence spectra of GaMnAs. Current Applied Physics, 2011, 11, 735-739.	2.4	1
36	Growth and optical properties of ZnO nanorods prepared through hydrothermal growth followed by chemical vapor deposition. , 2010, , .		2

Нуојім Кім

#	Article	IF	CITATIONS
37	Synthesis of porous CuO nanowires and its application to hydrogen detection. Sensors and Actuators B: Chemical, 2010, 146, 266-272.	7.8	142
38	Nanocomposite of cobalt oxide nanocrystals and single-walled carbon nanotubes for a gas sensor application. Sensors and Actuators B: Chemical, 2010, 150, 160-166.	7.8	68
39	Enhancement of CO gas sensing properties in ZnO thin films deposited on self-assembled Au nanodots. Sensors and Actuators B: Chemical, 2010, 151, 127-132.	7.8	53
40	Investigations on growth and hydrogen gas sensing property of ZnO nanowires prepared by hydrothermal growth. , 2010, , .		0
41	NO gas sensing properties of ZnO wire-like thin films synthesized by thermal oxidation of sputtered Zn metallic films in air. , 2010, , .		0
42	Synthesis and Gas Sensing Properties of ZnO Nanostructures. Journal of the Korean Physical Society, 2010, 57, 1784-1788.	0.7	30
43	Synthesis and hydrogen gas sensing properties of ZnO wirelike thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2009, 27, 1347-1351.	2.1	31
44	ZnO nanowires prepared by hydrothermal growth followed by chemical vapor deposition for gas sensors. Journal of Vacuum Science & Technology B, 2009, 27, 1667-1672.	1.3	20
45	Magnetism in Si1â^'Mn diluted magnetic semiconductor thin films. Thin Solid Films, 2009, 518, 309-312.	1.8	3
46	Valence band structures of the phase change material Ge2Sb2Te5. Applied Physics Letters, 2007, 91, 251901.	3.3	13
47	Magnetic and Magnetotransport Properties of Annealed Amorphous Ge _{1-x} Mn _x Semiconductor Thin Films. , 2007, , .		0
48	Inverted hysteresis loops: Experimental artifacts arising from inappropriate or asymmetric sample positioning and the misinterpretation of experimental data. Journal of Magnetism and Magnetic Materials, 2007, 308, 56-60.	2.3	12
49	Electronic states of ultrathin Co layers on Cu. Physica Status Solidi (B): Basic Research, 2007, 244, 4411-4414.	1.5	2
50	p-Type GaN Growth from a Single GaN Precursor via Molecular Beam Epitaxy and Dopant Activation. Journal of the Korean Physical Society, 2007, 51, 112.	0.7	0
51	A Field Effect Transistor Fabricated with Metallic Singleâ€Walled Carbon Nanotubes. Fullerenes Nanotubes and Carbon Nanostructures, 2006, 14, 141-149.	2.1	2
52	The effect of metal cluster coatings on carbon nanotubes. Nanotechnology, 2006, 17, 496-500.	2.6	57
53	Magnetic and electrical properties of MBE-grown (Ge1â^'xSix)1â^'yMny thin films. Current Applied Physics, 2006, 6, 478-481.	2.4	11
54	Magneto-transport properties of amorphous Ge1â^'xMnx thin films. Current Applied Physics, 2006, 6, 545-548.	2.4	13

Ηγομιν Κιμ

#	Article	IF	CITATIONS
55	Neutron irradiation effect of poly-Si1â^'xMnx semiconductors grown by MBE. Current Applied Physics, 2006, 6, 432-435.	2.4	0
56	Neutron irradiation effects on polycrystalline Ge1â^'xMnx thin films grown by MBE. Current Applied Physics, 2006, 6, 482-485.	2.4	3
57	Optical characteristics of MBE grown GaMnAs embedded with MnAs clusters. Applied Surface Science, 2006, 253, 515-518.	6.1	6
58	Effect of annealing on the electric and magnetic properties of GaMnAs and Be-codoped GaMnAs. Journal of Magnetism and Magnetic Materials, 2006, 304, e155-e157.	2.3	5
59	Growth and magnetism in amorphous Si1â^'xMnx thin films grown by thermal deposition. Journal of Magnetism and Magnetic Materials, 2006, 304, e167-e169.	2.3	5
60	Magnetic and electrical properties of amorphous Ge1â^'xCrx thin films grown by low temperature vapor deposition. Journal of Magnetism and Magnetic Materials, 2006, 304, e170-e172.	2.3	2
61	Observation of ferromagnetism and anomalous Hall effect in laser-deposited chromium-doped indium tin oxide films. Solid State Communications, 2006, 137, 41-43.	1.9	44
62	Transport properties in MnAs-precipitated GaMnAs layers. Journal of Electroceramics, 2006, 17, 1047-1050.	2.0	3
63	Room temperature ferromagnetism and magnetoresistance in chromium-doped indium tin oxide. , 2005, , .		0
64	Ferromagnetism in amorphous Ge1â^'xMnx grown by low temperature vapor deposition. Solid State Communications, 2005, 134, 641-645.	1.9	12
65	Single-Walled Carbon Nanotube Biosensors Using Aptamers as Molecular Recognition Elements. Journal of the American Chemical Society, 2005, 127, 11906-11907.	13.7	539
66	Investigation of the humidity effect on the electrical properties of single-walled carbon nanotube transistors. Applied Physics Letters, 2005, 87, 093101.	3.3	120
67	Ferromagnetism and anomalous Hall effect in Mn-doped ZnO thin films grown by reactive sputtering. , 2005, , .		0
68	Magneto-electronic properties of Ge1â^'Mn thin films grown by MBE. Journal of Magnetism and Magnetic Materials, 2004, 272-276, E1539-E1540.	2.3	6
69	Heat treatment effect on magnetic properties of polycrystalline Si1â^'xMnx semiconductors grown by MBE. Journal of Magnetism and Magnetic Materials, 2004, 282, 240-243.	2.3	25
70	The origin of room temperature ferromagnetism in cobalt-doped zinc oxide thin films fabricated by PLD. Journal of the European Ceramic Society, 2004, 24, 1847-1851.	5.7	51
71	Transport and magnetic properties of delafossite CuAl1â^'xMnxO2 ceramics. Physica Status Solidi (B): Basic Research, 2004, 241, 1545-1548.	1.5	4
72	Growth and characterization of spinel-type magnetic semiconductor ZnCo2O4 by reactive magnetron sputtering. Physica Status Solidi (B): Basic Research, 2004, 241, 1553-1556.	1.5	20

Нуојім Кім

#	Article	IF	CITATIONS
73	Structural and transport properties of cubic spinel ZnCo2O4 thin films grown by reactive magnetron sputtering. Solid State Communications, 2004, 129, 627-630.	1.9	23
74	Optical and magnetic properties of laser-deposited Co-doped ZnO thin films. Solid State Communications, 2004, 131, 677-680.	1.9	64
75	Magnetic phases in polycrystalline Si1â^'xMnx semiconductors grown by MBE. Journal of Magnetism and Magnetic Materials, 2004, 282, 244-247.	2.3	8
76	Annealing effect on magnetic and electronic properties of polycrystalline Ge1â^'xMnx semiconductors grown by MBE. Journal of Magnetism and Magnetic Materials, 2004, 282, 385-388.	2.3	14
77	Electrical and magnetic properties of spinel-type magnetic semiconductor ZnCo2O4 grown by reactive magnetron sputtering. Journal of Applied Physics, 2004, 95, 7387-7389.	2.5	53
78	Magnetoresistance in laser-deposited Zn1–xCoxO thin films. Physica B: Condensed Matter, 2003, 327, 304-306.	2.7	63
79	Magnetic properties of epitaxially grown semiconducting Zn1â^'xCoxO thin films by pulsed laser deposition. Journal of Applied Physics, 2002, 92, 6066-6071.	2.5	323
80	Characteristics of cobalt-doped zinc oxide thin films prepared by pulsed laser deposition. IEEE Transactions on Magnetics, 2002, 38, 2880-2882.	2.1	21
81	Electrical and Magnetic Properties of Mn-Doped ZnO. Ferroelectrics, 2002, 273, 71-76.	0.6	4
82	Effects of rapid thermal annealing on the ferromagnetic properties of sputtered Zn1â^'x(Co0.5Fe0.5)xO thin films. Applied Physics Letters, 2002, 80, 3358-3360.	3.3	237
83	Electrical and Magnetic Properties of Mn-Doped ZnO. Ferroelectrics, 2002, 273, 71-76.	0.6	1
84	Lattice dynamics of magnesium fluoride from a semiempirical two-body potential model. Metals and Materials International, 2001, 7, 33-37.	3.4	1
85	Interfacial characteristics and magnetoresistive properties of reactively sputtered Fe-Al2O3-Co magnetic tunnel junctions. Metals and Materials International, 2000, 6, 63-66.	0.2	0
86	Optical and magnetic properties of laser-deposited semiconducting Zn/sub 1-x/Co/sub x/O thin films. , 0,		0