
Sorin Arsene

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4942182/publications.pdf Version: 2024-02-01

SODIN ADSENE

#	Article	IF	CITATIONS
1	Analysis of the action of the aerodynamic resistances on an electric multiple unit train type. IOP Conference Series: Materials Science and Engineering, 2019, 564, 012115.	0.6	2
2	An analysis of the required energy consumption to tow a classical passenger train with an electric locomotive. IOP Conference Series: Materials Science and Engineering, 2019, 564, 012116.	0.6	0
3	Electric Drive Solution for Short Distance Passenger Railway Vehicles on Non-Electrified or Mixed Lines. , 2019, , .		0
4	Dynamic pantograph behaviour on high-speed electric locomotives. IOP Conference Series: Materials Science and Engineering, 2018, 444, 072011.	0.6	0
5	Analysis of the action of aerodynamic forces in case a passenger train. IOP Conference Series: Materials Science and Engineering, 2018, 444, 072010.	0.6	2
6	Construction of elastic wheels on light rail vehicles. MATEC Web of Conferences, 2018, 178, 06006.	0.2	1
7	Theoretical and experimental research on the phenomenon of stick-slip at traction railway vehicles. IOP Conference Series: Materials Science and Engineering, 2018, 295, 012037.	0.6	1
8	Research regarding the action of the aerodynamic forces on a classical passenger train. MATEC Web of Conferences, 2018, 178, 06007.	0.2	2
9	Considerations on the use of elastic wheels to the urban transport vehicles. IOP Conference Series: Materials Science and Engineering, 2018, 324, 012018.	0.6	0
10	Experimental modal analysis of an electric locomotive body. MATEC Web of Conferences, 2017, 112, 07008.	0.2	0
11	Considerations on studying the characteristics of the elastic axle steering system on railway vehicles. MATEC Web of Conferences, 2017, 137, 01013.	0.2	0
12	System for measurement of interaction forces between wheel and rail for railway vehicles. MATEC Web of Conferences, 2017, 137, 01006.	0.2	3
13	The Influence of Air Currents on People and Facilities Near Railway. Procedia, Social and Behavioral Sciences, 2015, 186, 1081-1086.	0.5	4
14	Influence Resistance at Advancing on Fuel Consumption for Vehicles that use an Internal Source of Energy. Procedia, Social and Behavioral Sciences, 2015, 186, 573-581.	0.5	5
15	Static Analysis on Computer for Requests that Appear at Elements of the Pantograph of Type EP3. Applied Mechanics and Materials, 2015, 809-810, 1157-1162.	0.2	0
16	Optimizing Power Consumption of the Electric Vehicle Traction. Applied Mechanics and Materials, 2015, 809-810, 1103-1108.	0.2	2
17	Influence of Wind on the Aerodynamic Resistance for a Case of the Arrangement of the Equipment on Locomotive Bodywork LE 060EA. Applied Mechanics and Materials, 2015, 809-810, 1151-1156.	0.2	1
18	The Influence of Wind on the Pantograph Placed on the Railway Electric Vehicles Bodywork. Procedia, Social and Behavioral Sciences, 2015, 186, 1087-1094.	0.5	8

SORIN ARSENE

#	Article	IF	CITATIONS
19	Analysis of the wind influence on the aerodynamic drag in the case of a certain emplacement of the pantograph on the electric rail vehicles. INCAS Bulletin, 2015, 7, 3-12.	0.6	3
20	Influence of wind on aerodynamic drag for the second case of the arrangement of the equipment on the LE 060EA locomotive bodywork. INCAS Bulletin, 2015, 7, 35-41.	0.6	0
21	Analysis of the resistance to motion in the passenger trains hauled by the locomotive LE 060 EA 5100kW. INCAS Bulletin, 2014, 6, 13-21.	0.6	6
22	Study on aerodynamic resistance to electric rail vehicles generated by the power supply. INCAS Bulletin, 2014, 6, 151-158.	0.6	9
23	Experimental analysis for aerodynamic drag of the electric locomotives. INCAS Bulletin, 2013, 5, 99-113.	0.6	9
24	Unified system for optimizing the transmission of technical data flow from railway vehicles. , 2012, , .		0
25	Contact line oscillations induced by the pantograph coupling. , 2012, , .		0
26	Startup railway vehicles with asynchronous traction motors. , 2012, , .		2
27	Analysis of operating modes of electric motors for locomotive LE 040–3400kW modernized. , 2010, , .		2
28	Stand for testing electrical machines up to 1,500 kilowatts used in railway traction. , 2010, , .		3
29	Considerations on Dynamic Contact Force with Catenary for the EP3 Pantograph. Applied Mechanics and Materials, 0, 809-810, 1121-1126.	0.2	1
30	The Vertical Forces Introduced by Wind on the Active Pantograph from Bodywork of Locomotive LE 060 EA of 5100 kW. Applied Mechanics and Materials, 0, 809-810, 1115-1120.	0.2	4
31	Considerations on studying the loads on the motor bogie frame. IOP Conference Series: Materials Science and Engineering, 0, 400, 042003.	0.6	1
32	Study on the aerodynamic force which acts in the case of a train type multiple unit electric. IOP Conference Series: Materials Science and Engineering, 0, 591, 012083.	0.6	0