Greco HernÃ;ndez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4941952/publications.pdf

Version: 2024-02-01

41 papers 1,203 citations

³⁹⁴⁴²¹
19
h-index

33 g-index

48 all docs 48 docs citations

48 times ranked

1815 citing authors

#	Article	IF	CITATIONS
1	New insights into the interactions of HPV-16 E6*I and E6*II with p53 isoforms and induction of apoptosis in cancer-derived cell lines. Pathology Research and Practice, 2022, 234, 153890.	2.3	4
2	The versatile relationships between eIF4E and eIF4E-interacting proteins. Trends in Genetics, 2022, 38, 801-804.	6.7	8
3	Interplay between SERCA, 4E-BP, and eIF4E in the Drosophila heart. PLoS ONE, 2022, 17, e0267156.	2.5	6
4	Translational control in the naked mole-rat as a model highly resistant to cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1875, 188455.	7.4	3
5	The naked translation in cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1875, 188504.	7.4	O
6	High-risk human papillomavirus-18 uses an mRNA sequence to synthesize oncoprotein E6 in tumors. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	7
7	Unorthodox Mechanisms to Initiate Translation Open Novel Paths for Gene Expression. Journal of Molecular Biology, 2020, 432, 166702.	4.2	14
8	Autophagy Regulation by the Translation Machinery and Its Implications in Cancer. Frontiers in Oncology, 2020, 10, 322.	2.8	21
9	The Diverse Roles of RNA-Binding Proteins in Glioma Development. Advances in Experimental Medicine and Biology, 2019, 1157, 29-39.	1.6	26
10	Conservation and Variability of the AUG Initiation Codon Context in Eukaryotes. Trends in Biochemical Sciences, 2019, 44, 1009-1021.	7.5	64
11	A ribosomal protein S5 isoform is essential for oogenesis and interacts with distinct RNAs in Drosophila melanogaster. Scientific Reports, 2019, 9, 13779.	3.3	31
12	Antagonism between the RNA-binding protein Musashi1 and miR-137 and its potential impact on neurogenesis and glioblastoma development. Rna, 2019, 25, 768-782.	3.5	25
13	The Secret Life of Translation Initiation in Prostate Cancer. Frontiers in Genetics, 2019, 10, 14.	2.3	14
14	MicroRNAs in Tumor Cell Metabolism: Roles and Therapeutic Opportunities. Frontiers in Oncology, 2019, 9, 1404.	2.8	53
15	Luteolin inhibits Musashi1 binding to RNA and disrupts cancer phenotypes in glioblastoma cells. RNA Biology, 2018, 15, 1420-1432.	3.1	39
16	Cbp80 is needed for the expression of piRNA components and piRNAs. PLoS ONE, 2017, 12, e0181743.	2.5	2
17	Diverse cap-binding properties of Drosophila elF4E isoforms. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 1292-1303.	2.3	4
18	A Novel Function of Pet54 in Regulation of Cox1 Synthesis in Saccharomyces cerevisiae Mitochondria. Journal of Biological Chemistry, 2016, 291, 9343-9355.	3.4	16

#	Article	IF	Citations
19	Evolution ofÂTOR and Translation Control. , 2016, , 327-411.		8
20	On the Origin and Early Evolution of Translation in Eukaryotes. , 2016, , 81-107.		0
21	Evolution of the Molecules Coupling mRNA Transport with Translational Control in Metazoans. , 2016, , 531-546.		4
22	Evolution of eIF4E-Interacting Proteins. , 2016, , 207-234.		3
23	La-related Protein 1 (LARP1) Represses Terminal Oligopyrimidine (TOP) mRNA Translation Downstream of mTOR Complex 1 (mTORC1). Journal of Biological Chemistry, 2015, 290, 15996-16020.	3.4	198
24	Mextli Is a Novel Eukaryotic Translation Initiation Factor 4E-Binding Protein That Promotes Translation in <i>Drosophila melanogaster</i> Molecular and Cellular Biology, 2013, 33, 2854-2864.	2.3	23
25	On the Diversification of the Translation Apparatus across Eukaryotes. Comparative and Functional Genomics, 2012, 2012, 1-14.	2.0	16
26	Eukaryotic initiation factor 4E-3 is essential for meiotic chromosome segregation, cytokinesis and male fertility in <i>Drosophila</i> . Development (Cambridge), 2012, 139, 3211-3220.	2.5	31
27	Translational Control across Eukaryotes. Comparative and Functional Genomics, 2012, 2012, 1-2.	2.0	O
28	The Distribution of eIF4E-Family Members across Insecta. Comparative and Functional Genomics, 2012, 2012, 1-15.	2.0	13
29	Translation initiation in colorectal cancer. Cancer and Metastasis Reviews, 2012, 31, 387-395.	5.9	22
30	Cap binding-independent recruitment of elF4E to cytoplasmic foci. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 1217-1224.	4.1	10
31	Pharmacological and Genetic Evaluation of Proposed Roles of Mitogen-activated Protein Kinase/Extracellular Signal-regulated Kinase Kinase (MEK), Extracellular Signal-regulated Kinase (ERK), and p90RSK in the Control of mTORC1 Protein Signaling by Phorbol Esters. Journal of Biological Chemistry, 2011, 286, 27111-27122.	3.4	40
32	Origins and evolution of the mechanisms regulating translation initiation in eukaryotes. Trends in Biochemical Sciences, 2010, 35, 63-73.	7.5	57
33	On the origin of the cap-dependent initiation of translation in eukaryotes. Trends in Biochemical Sciences, 2009, 34, 166-175.	7.5	19
34	Was the initiation of translation in early eukaryotes IRES-driven?. Trends in Biochemical Sciences, 2008, 33, 58-64.	7. 5	39
35	Functional analysis of seven genes encoding eight translation initiation factor 4E (eIF4E) isoforms in Drosophila. Mechanisms of Development, 2005, 122, 529-543.	1.7	97
36	Functional diversity of the eukaryotic translation initiation factors belonging to eIF4 families. Mechanisms of Development, 2005, 122, 865-876.	1.7	119

Greco HernÃindez

#	Article	IF	CITATIONS
37	Internal ribosome entry site drives cap-independent translation of reaper and heat shock protein 70 mRNAs in Drosophila embryos. Rna, 2004, 10, 1783-1797.	3.5	73
38	Two functionally redundant isoforms of Drosophila melanogaster eukaryotic initiation factor 4B are involved in cap-dependent translation, cell survival, and proliferation. FEBS Journal, 2004, 271, 2923-2936.	0.2	24
39	Identification and characterization of the expression of the translation initiation factor 4A (eIF4A) fromDrosophila melanogaster. Proteomics, 2004, 4, 316-326.	2.2	17
40	Isolation and characterization of the cDNA and the gene for eukaryotic translation initiation factor 4G from Drosophila melanogaster. FEBS Journal, 1998, 253, 27-35.	0.2	24
41	Translation initiation factor eIF-4E from Drosophila: cDNA sequence and expression of the gene. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1995, 1261, 427-431.	2.4	25