Pamela Robey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4941063/publications.pdf

Version: 2024-02-01

300 papers 50,811 citations

94 h-index 220 g-index

311 all docs

311 docs citations

times ranked

311

35654 citing authors

#	Article	IF	CITATIONS
1	Postnatal human dental pulp stem cells (DPSCs) <i>in vitro</i> and <i>in vivo</i> . Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 13625-13630.	7.1	3,894
2	Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet, The, 2004, 364, 149-155.	13.7	2,920
3	SHED: Stem cells from human exfoliated deciduous teeth. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5807-5812.	7.1	2,404
4	Bone marrow stromal cells attenuate sepsis via prostaglandin E2–dependent reprogramming of host macrophages to increase their interleukin-10 production. Nature Medicine, 2009, 15, 42-49.	30.7	2,165
5	Self-Renewing Osteoprogenitors in Bone Marrow Sinusoids Can Organize a Hematopoietic Microenvironment. Cell, 2007, 131, 324-336.	28.9	2,001
6	Bone Marrow Stromal Stem Cells: Nature, Biology, and Potential Applications. Stem Cells, 2001, 19, 180-192.	3. 2	1,768
7	Stem Cell Properties of Human Dental Pulp Stem Cells. Journal of Dental Research, 2002, 81, 531-535.	5.2	1,729
8	Mesenchymal Stem Cells: Revisiting History, Concepts, and Assays. Cell Stem Cell, 2008, 2, 313-319.	11.1	1,392
9	MT1-MMP-Deficient Mice Develop Dwarfism, Osteopenia, Arthritis, and Connective Tissue Disease due to Inadequate Collagen Turnover. Cell, 1999, 99, 81-92.	28.9	1,213
10	Isolation and characterization of type IV procollagen, laminin, and heparan sulfate proteoglycan from the EHS sarcoma. Biochemistry, 1982, 21, 6188-6193.	2.5	1,185
11	The meaning, the sense and the significance: translating the science of mesenchymal stem cells into medicine. Nature Medicine, 2013, 19, 35-42.	30.7	1,032
12	Surface protein characterization of human adipose tissueâ€derived stromal cells. Journal of Cellular Physiology, 2001, 189, 54-63.	4.1	965
13	Stem cells in tissue engineering. Nature, 2001, 414, 118-121.	27.8	870
14	A Mosaic Activating Mutation in <i>AKT1</i> Associated with the Proteus Syndrome. New England Journal of Medicine, 2011, 365, 611-619.	27.0	800
15	Human bone cellsin vitro. Calcified Tissue International, 1985, 37, 453-460.	3.1	684
16	Circulating Skeletal Stem Cells. Journal of Cell Biology, 2001, 153, 1133-1140.	5.2	632
17	Single-Colony Derived Strains of Human Marrow Stromal Fibroblasts Form Bone After Transplantation In Vivo. Journal of Bone and Mineral Research, 1997, 12, 1335-1347.	2.8	630
18	Expression and localization of the two small proteoglycans biglycan and decorin in developing human skeletal and non-skeletal tissues Journal of Histochemistry and Cytochemistry, 1990, 38, 1549-1563.	2.5	626

#	Article	IF	Citations
19	Isolation of a heparan sulfate-containing proteoglycan from basement membrane Proceedings of the National Academy of Sciences of the United States of America, 1980, 77, 4494-4498.	7.1	625
20	Enzyme-linked immunoassay (ELISA) for connective tissue components. Analytical Biochemistry, 1980, 104, 205-214.	2.4	616
21	FGF-23 in fibrous dysplasia of bone and its relationship to renal phosphate wasting. Journal of Clinical Investigation, 2003, 112, 683-692.	8.2	567
22	Osteoblasts synthesize and respond to transforming growth factor-type beta (TGF-beta) in vitro Journal of Cell Biology, 1987, 105, 457-463.	5.2	560
23	Targeted disruption of the biglycan gene leads to an osteoporosis-like phenotype in mice. Nature Genetics, 1998, 20, 78-82.	21.4	543
24	Marrow stromal stem cells. Journal of Clinical Investigation, 2000, 105, 1663-1668.	8.2	512
25	BONE FORMATION IN VIVO: COMPARISON OF OSTEOGENESIS BY TRANSPLANTED MOUSE AND HUMAN MARROW STROMAL FIBROBLASTS. Transplantation, 1997, 63, 1059-1069.	1.0	452
26	The efficacy of mesenchymal stem cells to regenerate and repair dental structures. Orthodontics and Craniofacial Research, 2005, 8, 191-199.	2.8	448
27	Preferential digestion of basement membrane collagen by an enzyme derived from a metastatic murine tumor Proceedings of the National Academy of Sciences of the United States of America, 1979, 76, 2268-2272.	7.1	405
28	Phenotypic Effects of Biglycan Deficiency Are Linked to Collagen Fibril Abnormalities, Are Synergized by Decorin Deficiency, and Mimic Ehlers-Danlos-Like Changes in Bone and Other Connective Tissues. Journal of Bone and Mineral Research, 2002, 17, 1180-1189.	2.8	392
29	Expression of bone sialoprotein (BSP) in developing human tissues. Calcified Tissue International, 1991, 49, 421-426.	3.1	385
30	No Identical "Mesenchymal Stem Cells―at Different Times and Sites: Human Committed Progenitors of Distinct Origin and Differentiation Potential Are Incorporated as Adventitial Cells in Microvessels. Stem Cell Reports, 2016, 6, 897-913.	4.8	378
31	Comparison of Stem-cell-mediated Osteogenesis and Dentinogenesis. Journal of Dental Research, 2003, 82, 976-981.	5.2	365
32	Bone formation by human postnatal bone marrow stromal stem cells is enhanced by telomerase expression. Nature Biotechnology, 2002, 20, 587-591.	17. 5	351
33	Comparison of human dental pulp and bone marrow stromal stem cells by cDNA microarray analysis. Bone, 2001, 29, 532-539.	2.9	333
34	Bone matrix RGD glycoproteins: Immunolocalization and interaction with human primary osteoblastic bone cells in vitro. Journal of Bone and Mineral Research, 1994, 9, 487-496.	2.8	324
35	Integrin-mediated interactions between human bone marrow stromal precursor cells and the extracellular matrix. Bone, 2001, 28, 174-181.	2.9	323
36	Skeletal site-specific characterization of orofacial and iliac crest human bone marrow stromal cells in same individuals. Bone, 2006, 38, 758-768.	2.9	318

#	Article	IF	Citations
37	BRD4 is an atypical kinase that phosphorylates Serine2 of the RNA Polymerase II carboxy-terminal domain. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6927-6932.	7.1	313
38	Skeletal stem cells. Development (Cambridge), 2015, 142, 1023-1027.	2.5	302
39	Human Pluripotent Stem Cell Culture: Considerations for Maintenance, Expansion, and Therapeutics. Cell Stem Cell, 2014, 14, 13-26.	11.1	297
40	Factors required for bone marrow stromal fibroblast colony formation <i>in vitro</i> British Journal of Haematology, 1997, 97, 561-570.	2.5	263
41	PHOG, a candidate gene for involvement in the short stature of Turner syndrome. Human Molecular Genetics, 1997, 6, 1341-1347.	2.9	255
42	The small leucineâ€rich proteoglycan biglycan modulates BMPâ€4â€induced osteoblast differentiation. FASEB Journal, 2004, 18, 948-958.	0.5	255
43	Partial purification and characterization of a neutral protease which cleaves type IV collagen. Biochemistry, 1981, 20, 100-104.	2.5	236
44	The histopathology of fibrous dysplasia of bone in patients with activating mutations of the Gs? gene: site-specific patterns and recurrent histological hallmarks., 1999, 187, 249-258.		234
45	Mutations of the GNAS1 Gene, Stromal Cell Dysfunction, and Osteomalacic Changes in Non-McCune-Albright Fibrous Dysplasia of Bone. Journal of Bone and Mineral Research, 2000, 15, 120-128.	2.8	225
46	REPAIR OF CRANIOTOMY DEFECTS USING BONE MARROW STROMAL CELLS. Transplantation, 1998, 66, 1272-1278.	1.0	223
47	A crucial role of caspase-3 in osteogenic differentiation of bone marrow stromal stem cells. Journal of Clinical Investigation, 2004, 114, 1704-1713.	8.2	221
48	Extracellular Matrix Proteoglycans Control the Fate of Bone Marrow Stromal Cells. Journal of Biological Chemistry, 2005, 280, 30481-30489.	3.4	220
49	Clear up this stem-cell mess. Nature, 2018, 561, 455-457.	27.8	217
50	Reproduction of human fibrous dysplasia of bone in immunocompromised mice by transplanted mosaics of normal and Gsalpha-mutated skeletal progenitor cells Journal of Clinical Investigation, 1998, 101, 1737-1744.	8.2	197
51	Factor H Binding to Bone Sialoprotein and Osteopontin Enables Tumor Cell Evasion of Complement-mediated Attack. Journal of Biological Chemistry, 2000, 275, 16666-16672.	3.4	188
52	In vivo bone formation by human bone marrow stromal cells: Effect of carrier particle size and shape. Biotechnology and Bioengineering, 2001, 72, 96-107.	3.3	187
53	Normal Vision despite Narrowing of the Optic Canal in Fibrous Dysplasia. New England Journal of Medicine, 2002, 347, 1670-1676.	27.0	183
54	Biosynthesis of type IV procollagens. Biochemistry, 1980, 19, 1284-1289.	2.5	182

#	Article	IF	Citations
55	Structure, Expression, and Regulation of the Major Noncollagenous Matrix Proteins of Bone. Clinical Orthopaedics and Related Research, 1992, &NA, 275???294.	1.5	169
56	The Biochemistry of Bone. Endocrinology and Metabolism Clinics of North America, 1989, 18, 859-902.	3.2	167
57	Renal Phosphate Wasting in Fibrous Dysplasia of Bone Is Part of a Generalized Renal Tubular Dysfunction Similar to That Seen in Tumor-Induced Osteomalacia. Journal of Bone and Mineral Research, 2001, 16, 806-813.	2.8	165
58	EFFECT OF SERUM ON HUMAN BONE MARROW STROMAL CELLS: EX VIVO EXPANSION AND IN VIVO BONE FORMATION. Transplantation, 2000, 70, 1780-1787.	1.0	158
59	Advances in stem cell research and therapeutic development. Nature Cell Biology, 2019, 21, 801-811.	10.3	158
60	"Mesenchymal―Stem Cells in Human Bone Marrow (Skeletal Stem Cells): A Critical Discussion of Their Nature, Identity, and Significance in Incurable Skeletal Disease. Human Gene Therapy, 2010, 21, 1057-1066.	2.7	154
61	Characterization of <i>gsp </i> -Mediated Growth Hormone Excess in the Context of McCune-Albright Syndrome. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 5104-5112.	3.6	145
62	Modulation of canonical Wnt signaling by the extracellular matrix component biglycan. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17022-17027.	7.1	144
63	Postnatal Skeletal Stem Cells. Methods in Enzymology, 2006, 419, 117-148.	1.0	142
64	Differential Expression of Human Lysyl Hydroxylase Genes, Lysine Hydroxylation, and Cross-Linking of Type I Collagen During Osteoblastic Differentiation In Vitro. Journal of Bone and Mineral Research, 1999, 14, 1272-1280.	2.8	140
65	"Mesenchymal stem cells― fact or fiction, and implications in their therapeutic use. F1000Research, 2017, 6, 524.	1.6	137
66	Fracture Incidence in Polyostotic Fibrous Dysplasia and the McCune-Albright Syndrome. Journal of Bone and Mineral Research, 2004, 19, 571-577.	2.8	136
67	Age-Related Osteoporosis in Biglycan-Deficient Mice Is Related to Defects in Bone Marrow Stromal Cells. Journal of Bone and Mineral Research, 2002, 17, 331-340.	2.8	134
68	Localization of bone sialoprotein (BSP) to Golgi and post-Golgi secretory structures in osteoblasts and to discrete sites in early bone matrix Journal of Histochemistry and Cytochemistry, 1993, 41, 193-203.	2.5	133
69	Vertebrate Mineralized Matrix Proteins: Structure and Function. Connective Tissue Research, 1996, 35, 131-136.	2.3	131
70	In Vivo Bone Formation by Human Bone Marrow Stromal Cells: Reconstruction of the Mouse Calvarium and Mandible. Stem Cells, 2006, 24, 2140-2149.	3.2	130
71	Exercise-induced changes in the cortical bone of growing mice are bone- and gender-specific. Bone, 2007, 40, 1120-1127.	2.9	128
72	Osteogenic imprinting upstream of marrow stromal cell differentiation. Journal of Cellular Biochemistry, 2000, 78, 391-403.	2.6	124

#	Article	IF	CITATIONS
73	Telomerase Accelerates Osteogenesis of Bone Marrow Stromal Stem Cells by Upregulation of CBFA1, Osterix, and Osteocalcin. Journal of Bone and Mineral Research, 2003, 18, 716-722.	2.8	124
74	Thrombospondin is an osteoblast-derived component of mineralized extracellular matrix Journal of Cell Biology, 1989, 108, 719-727.	5.2	123
75	Onset, Progression, and Plateau of Skeletal Lesions in Fibrous Dysplasia and the Relationship to Functional Outcome. Journal of Bone and Mineral Research, 2007, 22, 1468-1474.	2.8	122
76	Age-Dependent Demise of <i>GNAS</i> Mutated Skeletal Stem Cells and "Normalization―of Fibrous Dysplasia of Bone. Journal of Bone and Mineral Research, 2008, 23, 1731-1740.	2.8	119
77	Natural history and treatment of fibrous dysplasia of bone: a multicenter clinicopathologic study promoted by the European Pediatric Orthopaedic Society. Journal of Pediatric Orthopaedics Part B, 2003, 12, 155-77.	0.6	117
78	Multipotential Cells in the Bone Marrow Stroma: Regulation in the Context of Organ Physiology. Critical Reviews in Eukaryotic Gene Expression, 1999, 9, 159-173.	0.9	115
79	The interplay of osteogenesis and hematopoiesis. Journal of Cell Biology, 2004, 167, 1113-1122.	5.2	113
80	Osteontctin mRNA: distribution in normal and transformed cells. Nucleic Acids Research, 1986, 14, 4483-4497.	14.5	111
81	Age-related changes in hyaluronan, proteoglycan, collagen, and osteonectin synthesis by human bone cells. Journal of Cellular Physiology, 1992, 151, 215-227.	4.1	109
82	Thyroid Carcinoma in the McCune-Albright Syndrome: Contributory Role of Activating G _s l± Mutations. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 4413-4417.	3.6	109
83	Parathyroid-Specific Double Knockout of Gq and G11 \hat{l} ±-Subunits Leads to a Phenotype Resembling Germline Knockout of the Extracellular Ca2+-Sensing Receptor. Molecular Endocrinology, 2007, 21, 274-280.	3.7	109
84	An Instrument to Measure Skeletal Burden and Predict Functional Outcome in Fibrous Dysplasia of Bone. Journal of Bone and Mineral Research, 2004, 20, 219-226.	2.8	107
85	A Randomized, Double Blind, Placebo-Controlled Trial of Alendronate Treatment for Fibrous Dysplasia of Bone. Journal of Clinical Endocrinology and Metabolism, 2014, 99, 4133-4140.	3.6	107
86	Stem Cells in the Face: Tooth Regeneration and Beyond. Cell Stem Cell, 2012, 11, 291-301.	11.1	106
87	In Vitro Model of Bromodeoxyuridine or Iron Oxide Nanoparticle Uptake by Activated Macrophages from Labeled Stem Cells: Implications for Cellular Therapy. Stem Cells, 2008, 26, 1366-1375.	3.2	105
88	Cell Sources for Bone Regeneration: The Good, the Bad, and the Ugly (But Promising). Tissue Engineering - Part B: Reviews, 2011, 17, 423-430.	4.8	105
89	Osteoclastogenesis in fibrous dysplasia of bone: in situ and in vitro analysis of IL-6 expression. Bone, 2003, 33, 434-442.	2.9	103
90	Fibrous Dysplasia as a Stem Cell Disease. Journal of Bone and Mineral Research, 2006, 21, P125-P131.	2.8	103

#	Article	IF	Citations
91	Bone Marrow-Derived Mesenchymal Stromal Cells Harness Purinergenic Signaling to Tolerize Human Th1 Cells In Vivo. Stem Cells, 2015, 33, 1200-1212.	3.2	102
92	Changes in apatite crystal size in bones of patients with osteogenesis imperfecta. Calcified Tissue International, 1991, 49, 248-250.	3.1	101
93	Bone sialoprotein (BSP) secretion and osteoblast differentiation: relationship to bromodeoxyuridine incorporation, alkaline phosphatase, and matrix deposition Journal of Histochemistry and Cytochemistry, 1993, 41, 183-191.	2.5	101
94	Fetal bovine bone cells synthesize bone-specific matrix proteins Journal of Cell Biology, 1984, 99, 607-614.	5.2	98
95	Purification and fragmentation of nondenatured bone sialoprotein: Evidence for a cryptic, RGD-resistant cell attachment domain. Journal of Bone and Mineral Research, 1993, 8, 985-995.	2.8	97
96	Fibrous Dysplasia in the Spine. Journal of Bone and Joint Surgery - Series A, 2004, 86, 531-537.	3.0	96
97	Human bone cell enzyme expression and cellular heterogeneity: Correlation of alkaline phosphatase enzyme activity with cell cycle. Journal of Cellular Physiology, 1990, 144, 115-121.	4.1	95
98	Journal of Bone and Mineral Research. Journal of Bone and Mineral Research, 1993, 8, S483-S487.	2.8	94
99	Letrozole Treatment of Precocious Puberty in Girls with the McCune-Albright Syndrome: A Pilot Study. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 2100-2106.	3.6	93
100	Wnt/ \hat{l}^2 -catenin signaling is differentially regulated by $\hat{Gl}\pm$ proteins and contributes to fibrous dysplasia. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20101-20106.	7.1	92
101	Bi-allelic CSF1R Mutations Cause Skeletal Dysplasia of Dysosteosclerosis-Pyle Disease Spectrum and Degenerative Encephalopathy with Brain Malformation. American Journal of Human Genetics, 2019, 104, 925-935.	6.2	92
102	Detection of Specific Extracellular Matrix Molecules in Drusen, Bruch's Membrane, and Ciliary Body. American Journal of Ophthalmology, 1987, 104, 373-381.	3.3	91
103	Series Introduction: Stem cells near the century mark. Journal of Clinical Investigation, 2000, 105, 1489-1491.	8.2	89
104	Superparamagnetic Iron Oxide Nanoparticles Labeling of Bone Marrow Stromal (Mesenchymal) Cells Does Not Affect Their "Stemness― PLoS ONE, 2010, 5, e11462.	2.5	89
105	Receptor tyrosine kinase expression in human bone marrow stromal cells., 1998, 177, 426-438.		88
106	Osteomalacic and Hyperparathyroid Changes in Fibrous Dysplasia Of Bone: Core Biopsy Studies and Clinical Correlations. Journal of Bone and Mineral Research, 2003, 18, 1235-1246.	2.8	87
107	Path to the Clinic: Assessment of iPSC-Based Cell Therapies InÂVivo in a Nonhuman Primate Model. Cell Reports, 2014, 7, 1298-1309.	6.4	84
108	Directed Differentiation of Human Induced Pluripotent Stem Cells Toward Bone and Cartilage: In Vitro Versus In Vivo Assays. Stem Cells Translational Medicine, 2014, 3, 867-878.	3.3	84

#	Article	IF	Citations
109	Enumeration of the colony-forming units–fibroblast from mouse and human bone marrow in normal and pathological conditions. Stem Cell Research, 2009, 2, 83-94.	0.7	83
110	Bone Marrow Mesenchymal Stromal Cells to Treat Tissue Damage in Allogeneic Stem Cell Transplant Recipients: Correlation of Biological Markers with Clinical Responses. Stem Cells, 2014, 32, 1278-1288.	3.2	83
111	LONG-TERM OUTCOME OF OPTIC NERVE ENCASEMENT AND OPTIC NERVE DECOMPRESSION IN PATIENTS WITH FIBROUS DYSPLASIA. Neurosurgery, 2006, 59, 1011-1018.	1.1	81
112	In Vivo Transfer of Intracellular Labels from Locally Implanted Bone Marrow Stromal Cells to Resident Tissue Macrophages. PLoS ONE, 2009, 4, e6712.	2.5	80
113	The use of adult stem cells in rebuilding the human face. Journal of the American Dental Association, 2006, 137, 961-972.	1.5	79
114	Regulation of stem cell therapies under attack in Europe: for whom the bell tolls. EMBO Journal, 2013, 32, 1489-1495.	7.8	79
115	WNT1-induced Secreted Protein-1 (WISP1), a Novel Regulator of Bone Turnover and Wnt Signaling. Journal of Biological Chemistry, 2015, 290, 14004-14018.	3.4	79
116	Species Differences in Growth Requirements for Bone Marrow Stromal Fibroblast Colony Formation In Vitro. Calcified Tissue International, 1996, 59, 265-270.	3.1	77
117	Transfer, analysis, and reversion of the fibrous dysplasia cellular phenotype in human skeletal progenitors. Journal of Bone and Mineral Research, 2010, 25, 1103-1116.	2.8	77
118	Canine Cranial Reconstruction Using Autologous Bone Marrow Stromal Cells. American Journal of Pathology, 2006, 168, 542-550.	3.8	76
119	Biglycan modulates angiogenesis and bone formation during fracture healing. Matrix Biology, 2014, 35, 223-231.	3.6	76
120	Dental characteristics of fibrous dysplasia and McCune-Albright syndrome. Oral Surgery Oral Medicine Oral Pathology Oral Radiology and Endodontics, 2003, 96, 275-282.	1.4	73
121	Diseases of Bone and the Stromal Cell Lineage. Journal of Bone and Mineral Research, 1999, 14, 336-341.	2.8	72
122	Age-related Changes in Human Bone Proteoglycan Structure. Journal of Biological Chemistry, 2002, 277, 43638-43647.	3.4	71
123	Extracellular matrix formation by osteoblasts from patients with osteogenesis imperfecta. Journal of Bone and Mineral Research, 1992, 7, 921-930.	2.8	67
124	Comparison of the molecular profiles of human embryonic and induced pluripotent stem cells of isogenic origin. Stem Cell Research, 2014, 12, 376-386.	0.7	67
125	In Vivo Bone Formation by Progeny of Human Embryonic Stem Cells. Stem Cells and Development, 2011, 20, 269-287.	2.1	66
126	Constitutive Expression of GsαR201C in Mice Produces a Heritable, Direct Replica of Human Fibrous Dysplasia Bone Pathology and Demonstrates Its Natural History. Journal of Bone and Mineral Research, 2014, 29, 2357-2368.	2.8	66

#	Article	IF	CITATIONS
127	Circulating Connective Tissue Precursors: Extreme Rarity in Humans and Chondrogenic Potential in Guinea Pigs. Stem Cells, 2007, 25, 1830-1839.	3.2	65
128	Activation of RANK/RANKL/OPG Pathway Is Involved in the Pathophysiology of Fibrous Dysplasia and Associated With Disease Burden. Journal of Bone and Mineral Research, 2019, 34, 290-294.	2.8	65
129	Stromal-derived IL-6 alters the balance of myeloerythroid progenitors during <i>Toxoplasma gondii</i> infection. Journal of Leukocyte Biology, 2012, 92, 123-131.	3.3	64
130	Manufacturing Differences Affect Human Bone Marrow Stromal Cell Characteristics and Function: Comparison of Production Methods and Products from Multiple Centers. Scientific Reports, 2017, 7, 46731.	3.3	64
131	WISP1/CCN4: A Potential Target for Inhibiting Prostate Cancer Growth and Spread to Bone. PLoS ONE, 2013, 8, e71709.	2.5	64
132	Dental and Skeletal Stem Cells: Potential Cellular Therapeutics for Craniofacial Regeneration. Journal of Dental Education, 2002, 66, 766-773.	1.2	63
133	Phenotypic and genotypic characterisation of Noonan-like/multiple giant cell lesion syndrome. Journal of Medical Genetics, 2005, 42, e11-e11.	3.2	62
134	Human maxillary tuberosity and jaw periosteum as sources of osteoprogenitor cells for tissue engineering. Oral Surgery Oral Medicine Oral Pathology Oral Radiology and Endodontics, 2007, 104, 618.e1-618.e12.	1.4	62
135	Bone Marrow Stromal Cell Assays: In Vitro and In Vivo. Methods in Molecular Biology, 2014, 1130, 279-293.	0.9	62
136	Gnathodiaphyseal Dysplasia: A Syndrome of Fibro-Osseous Lesions of Jawbones, Bone Fragility, and Long Bone Bowing. Journal of Bone and Mineral Research, 2001, 16, 1710-1718.	2.8	61
137	Skeletal progenitors and the GNAS gene: fibrous dysplasia of bone read through stem cells. Journal of Molecular Endocrinology, 2010, 45, 355-364.	2.5	61
138	Differential display of human marrow stromal cells reveals unique mRNA expression patterns in response to dexamethasone. Journal of Cellular Biochemistry, 2000, 76, 231-243.	2.6	60
139	Formation of hematopoietic territories and bone by transplanted human bone marrow stromal cells requires a critical cell density. Experimental Hematology, 2007, 35, 995-1004.	0.4	60
140	p53 Loss Increases the Osteogenic Differentiation of Bone Marrow Stromal Cells. Stem Cells, 2015, 33, 1304-1319.	3.2	60
141	Osteonectin, bone proteoglycan, and phosphophoryn defects in a form of bovine osteogenesis imperfecta Proceedings of the National Academy of Sciences of the United States of America, 1984, 81, 2213-2217.	7.1	59
142	Global transcriptome analysis of human bone marrow stromal cells (BMSC) reveals proliferative, mobile and interactive cells that produce abundant extracellular matrix proteins, some of which may affect BMSC potency. Cytotherapy, 2011, 13, 661-674.	0.7	59
143	The X-chromosomal human biglycan gene BGN is subject to X inactivation but is transcribed like an X-Y homologous gene. Human Genetics, 1995, 96, 44-52.	3.8	57
144	A Novel GNAS1 Mutation, R201G, in McCune-Albright Syndrome. Journal of Bone and Mineral Research, 1999, 14, 1987-1989.	2.8	57

#	Article	IF	CITATIONS
145	Cementum-Forming Cells Are Phenotypically Distinct from Bone-Forming Cells. Journal of Bone and Mineral Research, 2000, 15, 52-59.	2.8	57
146	Intra-subject variability in human bone marrow stromal cell (BMSC) replicative senescence: Molecular changes associated with BMSC senescence. Stem Cell Research, 2013, 11, 1060-1073.	0.7	57
147	Age-related changes in human oestrogen receptor α function and levels in osteoblasts. Biochemical Journal, 1998, 333, 787-794.	3.7	56
148	Normal Human Cementum-Derived Cells: Isolation, Clonal Expansion, and In Vitro and In Vivo Characterization. Journal of Bone and Mineral Research, 2009, 13, 1547-1554.	2.8	56
149	Mutant DLX 3 disrupts odontoblast polarization and dentin formation. Developmental Biology, 2010, 344, 682-692.	2.0	56
150	Modeling plasticity and dysplasia of pancreatic ductal organoids derived from human pluripotent stem cells. Cell Stem Cell, 2021, 28, 1105-1124.e19.	11.1	53
151	TGFâ€Î²1 and WISPâ€1/CCNâ€4 can regulate each other's activity to cooperatively control osteoblast function. Journal of Cellular Biochemistry, 2008, 104, 1865-1878.	2.6	52
152	Extracellular matrix stoichiometry in osteoblasts from patients with osteogenesis imperfecta. Journal of Bone and Mineral Research, 1995, 10, 1122-1129.	2.8	52
153	Bone marrow microenvironment in myelomagenesis: its potential role in early diagnosis. Expert Review of Molecular Diagnostics, 2010, 10, 465-480.	3.1	52
154	Gene Expression Profile of Human Bone Marrow Stromal Cells: High-Throughput Expressed Sequence Tag Sequencing Analysis. Genomics, 2002, 79, 7-17.	2.9	51
155	Pegvisomant for the Treatment of gsp-Mediated Growth Hormone Excess in Patients with McCune-Albright Syndrome. Journal of Clinical Endocrinology and Metabolism, 2006, 91, 2960-2966.	3.6	48
156	Non-colony type monolayer culture of human embryonic stem cells. Stem Cell Research, 2012, 9, 237-248.	0.7	48
157	Bone Formation in Transplants of Human Bone Marrow Stromal Cells and Hydroxyapatite–Tricalcium Phosphate: Prediction with Quantitative CT in Mice. Radiology, 2004, 230, 369-376.	7.3	46
158	Generation of clinical grade human bone marrow stromal cells for use in bone regeneration. Bone, 2015, 70, 87-92.	2.9	46
159	Creation of New Bone by the Percutaneous Injection of Human Bone Marrow Stromal Cell and HA/TCP Suspensions. Tissue Engineering - Part A, 2008, 14, 1949-1958.	3.1	45
160	The mechanical phenotype of biglycan-deficient mice is bone- and gender-specific. Bone, 2006, 39, 106-116.	2.9	44
161	Mutations in NOTCH2 in patients with Hajdu–Cheney syndrome. Osteoporosis International, 2013, 24, 2275-2281.	3.1	43
162	A novel technique based on a PNA hybridization probe and FRET principle for quantification of mutant genotype in fibrous dysplasia/McCune-Albright syndrome. Nucleic Acids Research, 2004, 32, e63-e63.	14.5	42

#	Article	IF	Citations
163	Physical function is impaired but quality of life preserved in patients with fibrous dysplasia of bone. Bone, 2005, 37, 388-394.	2.9	42
164	Alternate protein kinase A activity identifies a unique population of stromal cells in adult bone. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8683-8688.	7.1	42
165	The establishment of a bank of stored clinical bone marrow stromal cell products. Journal of Translational Medicine, 2012, 10, 23.	4.4	42
166	The anatomy of bone sialoprotein immunoreactive sites in bone as revealed by combined ultrastructural histochemistry and immunohistochemistry. Calcified Tissue International, 1995, 57, 277-284.	3.1	40
167	Detection of extracellular matrix molecules synthesized in vitro by monkey and human retinal pigment epithelium: Influence of donor age and multiple passages. Experimental Eye Research, 1988, 46, 305-321.	2.6	39
168	RANKL Inhibition in Fibrous Dysplasia of Bone: A Preclinical Study in a Mouse Model of the Human Disease. Journal of Bone and Mineral Research, 2019, 34, 2171-2182.	2.8	39
169	A single day of TGF- \hat{l}^21 exposure activates chondrogenic and hypertrophic differentiation pathways in bone marrow-derived stromal cells. Communications Biology, 2021, 4, 29.	4.4	38
170	Cytotoxicity Mediated by the Fas Ligand (FasL)-activated Apoptotic Pathway in Stem Cells. Journal of Biological Chemistry, 2009, 284, 22022-22028.	3.4	37
171	Erythropoietin modulates bone marrow stromal cell differentiation. Bone Research, 2019, 7, 21.	11.4	37
172	Microstructure and mineral composition of dystrophic calcification associated with the idiopathic inflammatory myopathies. Arthritis Research and Therapy, 2009, 11, R159.	3.5	36
173	GNAS transcripts in skeletal progenitors: evidence for random asymmetric allelic expression of GsÂ. Human Molecular Genetics, 2007, 16, 1921-1930.	2.9	35
174	Long-term stable canine mandibular augmentation using autologous bone marrow stromal cells and hydroxyapatite/tricalcium phosphate. Biomaterials, 2008, 29, 4211-4216.	11.4	35
175	Regulation and Expression of the ATP-Binding Cassette Transporter ABCG2 in Human Embryonic Stem Cells . Stem Cells, 2012, 30, 2175-2187.	3.2	35
176	Human bone marrow stromal cell confluence: effects on cell characteristics and methods of assessment. Cytotherapy, 2015, 17, 897-911.	0.7	34
177	Standardised Nomenclature, Abbreviations, and Units for the Study of Bone Marrow Adiposity: Report of the Nomenclature Working Group of the International Bone Marrow Adiposity Society. Frontiers in Endocrinology, 2019, 10, 923.	3.5	34
178	Sodium fluoride does not increase human bone cell proliferation or protein synthesisin vitro. Calcified Tissue International, 1990, 47, 221-229.	3.1	33
179	Pluripotent Stem Cell Platforms for Drug Discovery. Trends in Molecular Medicine, 2018, 24, 805-820.	6.7	33
180	Ribbing disease: radiographic and biochemical characterization, lack of response to pamidronate. Skeletal Radiology, 2002, 31, 714-719.	2.0	32

#	Article	IF	Citations
181	Production and characterization of an antibody against the human bone GLA protein (BGP/osteocalcin) propeptide and its use in immunocytochemistry of bone cells. Bone and Mineral, 1994, 25, 167-182.	1.9	31
182	Developmental insights from early mammalian embryos and core signaling pathways that influence human pluripotent cell growth and differentiation. Stem Cell Research, 2014, 12, 610-621.	0.7	31
183	Osteoblast-Specific Expression of the Fibrous Dysplasia (FD)–Causing Mutation <i>GsαR201C</i> Produces a High Bone Mass Phenotype but Does Not Reproduce FD in the Mouse. Journal of Bone and Mineral Research, 2015, 30, 1030-1043.	2.8	31
184	Bone marrow skeletal stem/progenitor cell defects in dyskeratosis congenita and telomere biology disorders. Blood, 2015, 125, 793-802.	1.4	31
185	Biosynthesis of Type IV and V ($\hat{l}\pm A-\hat{l}\pm B$) Collagens by Human Placenta. Collagen and Related Research, 1981, 1, 137-150.	2.0	30
186	Collagenase-Treated Trabecular Bone Fragments: A Reproducible Source of Cells in the Osteoblastic Lineage. Calcified Tissue International, 1995, 56, S11-S12.	3.1	30
187	Molecular profile of clonal strains of human skeletal stem/progenitor cells with different potencies. Stem Cell Research, 2015, 14, 297-306.	0.7	30
188	Dental and skeletal stem cells: potential cellular therapeutics for craniofacial regeneration. Journal of Dental Education, 2002, 66, 766-73.	1.2	30
189	Skeletal Stem Cells. , 2004, , 415-424.		29
190	Functional Characterization of the Human Biglycan 5′-Flanking DNA and Binding of the Transcription Factor c-Krox. Journal of Bone and Mineral Research, 1997, 12, 2050-2060.	2.8	28
191	Clinical Vignette: Monostotic Fibrous Dysplasia of the Proximal Femur and Liposclerosing Myxofibrous Tumor: Which One Is Which?. Journal of Bone and Mineral Research, 2006, 21, 1955-1958.	2.8	27
192	Development of craniofacial structures in transgenic mice with constitutively active PTH/PTHrP receptor. Bone, 2008, 42, 321-331.	2.9	27
193	From Stem Cells to Bone-Forming Cells. International Journal of Molecular Sciences, 2021, 22, 3989.	4.1	27
194	Natural history and treatment of fibrous dysplasia of bone: a multicenter clinicopathologic study promoted by the European Pediatric Orthopaedic Society. Journal of Pediatric Orthopaedics Part B, 2003, 12, 155-177.	0.6	26
195	Analyses of variable panoramic radiographic characteristics of maxillo-mandibular fibrous dysplasia in McCune-Albright syndrome. Oral Diseases, 2004, 10, 36-43.	3.0	26
196	In vitro structural and functional relationships between preosteoclastic and bone endothelial cells: A juxtacrine model for migration and adhesion of osteoclast precursors. Journal of Cellular Physiology, 1995, 162, 199-212.	4.1	25
197	Skeletal ("Mesenchymalâ€) Stem Cells for Tissue Engineering. Methods in Molecular Medicine, 2007, 140, 83-99.	0.8	25
198	High-performance liquid chromatographic separation of hyaluronan and four proteoglycans produced by human bone cell cultures. Analytical Biochemistry, 1990, 188, 398-407.	2.4	24

#	Article	IF	Citations
199	Double FYVE-containing protein 1 (DFCP1): isolation, cloning and characterization of a novel FYVE finger protein from a human bone marrow cDNA library. Gene, 2000, 255, 195-203.	2.2	24
200	Bone Matrix Proteoglycans and Glycoproteins. , 2002, , 225-237.		24
201	Mouse Genetic Analysis of Bone Marrow Stem Cell Niches: Technological Pitfalls, Challenges, and Translational Considerations. Stem Cell Reports, 2017, 9, 1343-1358.	4.8	24
202	Comparison of human bone marrow stromal cells cultured in human platelet growth factors and fetal bovine serum. Journal of Translational Medicine, 2018, 16, 65.	4.4	24
203	Lineage-specific differentiation of osteogenic progenitors from pluripotent stem cells reveals the FGF1-RUNX2 association in neural crest-derived osteoprogenitors. Stem Cells, 2020, 38, 1107-1123.	3.2	24
204	Monoclonal antibodies against osteonectin show conservation of epitopes across species. Calcified Tissue International, 1989, 45, 74-80.	3.1	23
205	Identification of differentially expressed genes between osteoarthritic and normal trabecular bone from the intertrochanteric region of the proximal femur using cDNA microarray analysis. Bone, 2005, 36, 635-644.	2.9	23
206	Concise Review: Conceptualizing Paralogous Stem-Cell Niches and Unfolding Bone Marrow Progenitor Cell Identities. Stem Cells, 2018, 36, 11-21.	3.2	23
207	Human umbilical cord blood-borne fibroblasts contain marrow niche precursors that form a bone/marrow organoid <i>in vivo</i> . Development (Cambridge), 2017, 144, 1035-1044.	2.5	22
208	The Correlation of Specific Orthopaedic Features of Polyostotic Fibrous Dysplasia with Functional Outcome Scores in Children. Journal of Bone and Joint Surgery - Series A, 2006, 88, 818-823.	3.0	21
209	Biosynthesis of bone sialoprotein by a human osteoclast-like cell line (FLG 29.1). Journal of Bone and Mineral Research, 1995, 10, 187-196.	2.8	21
210	Establishing a Bone Marrow Stromal Cell Transplant Program at the National Institutes of Health Clinical Center. Tissue Engineering - Part B: Reviews, 2014, 20, 200-205.	4.8	21
211	The Biochemistry of Bone. , 2001, , 107-188.		20
212	Osteonectin content in human osteogenesis imperfecta bone shows a range similar to that of two bovine models of OI. Calcified Tissue International, 1987, 40, 260-264.	3.1	19
213	A cholinergic neuroskeletal interface promotes bone formation during postnatal growth and exercise. Cell Stem Cell, 2022, 29, 528-544.e9.	11.1	19
214	<i>In vivo</i> formation of bone and haematopoietic territories by transplanted human bone marrow stromal cells generated in medium with and without osteogenic supplements. Journal of Tissue Engineering and Regenerative Medicine, 2013, 7, 226-235.	2.7	18
215	Variations in Glycogen Synthesis in Human Pluripotent Stem Cells with Altered Pluripotent States. PLoS ONE, 2015, 10, e0142554.	2.5	18
216	In Vivo Formation of Stable Hyaline Cartilage by Na \tilde{A} -ve Human Bone Marrow Stromal Cells with Modified Fibrin Microbeads. Stem Cells Translational Medicine, 2019, 8, 586-592.	3.3	18

#	Article	IF	CITATIONS
217	Defective phosphorylation and processing of \hat{l}^2 -hexosaminidase by intact cultured fibroblasts from patients with mucolipidosis III. Archives of Biochemistry and Biophysics, 1982, 213, 251-257.	3.0	17
218	In vitro chromosome aberration tests using human dental pulp cells to detect the carcinogenic potential of chemical agents. Odontology / the Society of the Nippon Dental University, 2006, 94, 44-50.	1.9	17
219	Expression of the osteonectin gene potentially controlled by multiple Cis- and trans-acting factors in cultured bone cells. Journal of Bone and Mineral Research, 1991, 6, 1127-1136.	2.8	17
220	Stem cells and bone diseases: New tools, new perspective. Bone, 2015, 70, 55-61.	2.9	17
221	The role of osteogenic cells in the pathophysiology of paget's disease. Journal of Bone and Mineral Research, 1999, 14, 9-16.	2.8	16
222	The Regulatory Role of Matrix Proteins in Mineralization of Bone. , 2013, , 235-255.		16
223	Partial characterization of a novel â€~GGA'factor which binds to the osteonectin promoter in bovine bone cells. Gene, 1993, 130, 225-232.	2.2	15
224	Bone marrow interface: Preferential attachment of an osteoblastic marrow stromal cell line. Journal of Cellular Biochemistry, 1995, 59, 151-160.	2.6	15
225	Immortalization and Characterization of Bone Marrow Stromal Fibroblasts from a Patient with a Loss of Function Mutation in the Estrogen Receptor- $\hat{l}\pm$ Gene. Journal of Bone and Mineral Research, 1998, 13, 598-608.	2.8	15
226	Mice Deficient in <i>AKAP13</i> (<i>BRX</i>) Are Osteoporotic and Have Impaired Osteogenesis. Journal of Bone and Mineral Research, 2015, 30, 1887-1895.	2.8	15
227	Bisphosphonate-induced zebra lines in fibrous dysplasia of bone: histo-radiographic correlation in a case of McCune–Albright syndrome. Skeletal Radiology, 2017, 46, 1435-1439.	2.0	15
228	Intramyocardial Bone Marrow Stem Cells in Patients Undergoing Cardiac Surgical Revascularization. Annals of Thoracic Surgery, 2020, 109, 1142-1149.	1.3	15
229	Inhibition of BMP signaling with LDN 193189 can influence bone marrow stromal cell fate but does not prevent hypertrophy during chondrogenesis. Stem Cell Reports, 2022, 17, 616-632.	4.8	15
230	Effect of dexamethasone on collagen metabolism in two strains of mice. Biochemical Pharmacology, 1979, 28, 2261-2266.	4.4	14
231	Renal tubular epithelial cells express osteonectin in vivo and in vitro. Kidney International, 1992, 41, 56-64.	5.2	14
232	Age-Related Changes in Bone Matrix Structure In Vitro. Calcified Tissue International, 1995, 56, S41-S43.	3.1	14
233	Fuel on the fire. Lancet, The, 2001, 357, 2011.	13.7	14
234	Noncollagenous Bone Matrix Proteins. , 2008, , 335-349.		14

#	Article	IF	CITATIONS
235	An animal model of fibrous dysplasia. Trends in Molecular Medicine, 1999, 5, 322-323.	2.6	12
236	Neonatal McCuneâ€Albright Syndrome: A Unique Syndromic Profile With an Unfavorable Outcome. JBMR Plus, 2019, 3, e10134.	2.7	12
237	Cellular Mechanisms of Age-Related Bone Loss. , 1999, , 145-157.		12
238	Sodium fluoride does not increase human bone cell proliferation or protein synthesis in vitro. Calcified Tissue International, 1992, 50, 96-97.	3.1	11
239	The Bone Cell Biology of Osteogenesis Imperfecta. Connective Tissue Research, 1995, 31, 269-273.	2.3	11
240	Sensitive and specific method for detecting G protein–coupled receptor mRNAs. Nature Methods, 2007, 4, 35-37.	19.0	11
241	C-reactive protein in human lattice corneal dystrophy. Current Eye Research, 1982, 2, 721-724.	1.5	10
242	Bone glycoproteins. Methods in Enzymology, 1987, 145, 269-289.	1.0	10
243	Combinatorial cassettes to systematically evaluate tissue-engineered constructs in recipient mice. Biomaterials, 2018, 186, 31-43.	11.4	10
244	The Human Bone Sialoprotein Gene Contains an NF-E1/YY1 Cis-Acting Sequence with Putative Regulatory Activity. Calcified Tissue International, 1997, 60, 276-282.	3.1	9
245	Self-Renewing Osteoprogenitors in Bone Marrow Sinusoids Can Organize a Hematopoietic Microenvironment. Cell, 2008, 133, 928.	28.9	9
246	Impaired function of bone marrow stromal cells in systemic mastocytosis. Stem Cell Research, 2015, 15, 42-53.	0.7	9
247	Secreted frizzled related-protein 2 (Sfrp2) deficiency decreases adult skeletal stem cell function in mice. Bone Research, 2021, 9, 49.	11.4	9
248	Efficient Gene Transfer into Normal Human Skeletal Cells Using Recombinant Adenovirus and Conjugated Adenovirus-DNA Complexes. Calcified Tissue International, 1999, 64, 45-49.	3.1	8
249	Natural history and treatment of fibrous dysplasia of bone: a multicenter clinicopathologic study promoted by the European Pediatric Orthopaedic Society. Journal of Pediatric Orthopaedics Part B, 2003, 12, 155-177.	0.6	8
250	The Regulatory Role of Matrix Proteins in Mineralization of Bone. , 2008, , 191-240.		8
251	Chapter 24. RGD-Containing Proteins and Bone. Annual Reports in Medicinal Chemistry, 1993, 28, 227-236.	0.9	7
252	Alternative Cultures for Human Pluripotent Stem Cell Production, Maintenance, and Genetic Analysis. Journal of Visualized Experiments, 2014, , .	0.3	7

#	Article	IF	CITATIONS
253	Continuing Challenges in Advancing Preclinical Science in Skeletal Cell-Based Therapies and Tissue Regeneration. Journal of Bone and Mineral Research, 2018, 33, 1721-1728.	2.8	7
254	Changes in gene expression in human skeletal stem cells transduced with constitutively active $Gsl\pm 2020$, correlates with hallmark histopathological changes seen in fibrous dysplastic bone. PLoS ONE, 2020, 15, e0227279.	2.5	7
255	Bone Marrow Stromal Cell Assays: In Vitro and In Vivo. Methods in Molecular Biology, 2021, 2230, 379-396.	0.9	7
256	Missense mutation in the PTEN promoter of a patient with hemifacial hyperplasia. BoneKEy Reports, 2015, 4, 654.	2.7	6
257	Construction and in Vivo Efficacy of a Replication-Deficient Recombinant Adenovirus Encoding Murine Growth Hormone. Endocrinology, 1999, 140, 260-265.	2.8	6
258	Skeletal stem cells. , 2020, , 45-71.		5
259	Synthesis of glycoconjugates by trabecular meshwork of glaucomatous corneoscleral explants. Experimental Eye Research, 1988, 46, 111-115.	2.6	4
260	Aging and the Human Skeleton: Recommendations for Research. Calcified Tissue International, 1995, 56, S3-S4.	3.1	4
261	Interaction of Osteonectin and Type I Collagen in Bone Cells. Annals of the New York Academy of Sciences, 1990, 580, 526-528.	3.8	3
262	Neuropeptide beckons cells that heal. Nature Medicine, 2009, 15, 367-369.	30.7	3
262	Neuropeptide beckons cells that heal. Nature Medicine, 2009, 15, 367-369. The Survey on Cellular and Tissue-Engineered Therapies in Europe in 2016 and 2017. Tissue Engineering - Part A, 2021, 27, 336-350.	30.7	3
	The Survey on Cellular and Tissue-Engineered Therapies in Europe in 2016 and 2017. Tissue Engineering -		
263	The Survey on Cellular and Tissue-Engineered Therapies in Europe in 2016 and 2017. Tissue Engineering - Part A, 2021, 27, 336-350. Quantitative Craniofacial Analysis and Generation of Human Induced Pluripotent Stem Cells for	3.1	3
263	The Survey on Cellular and Tissue-Engineered Therapies in Europe in 2016 and 2017. Tissue Engineering - Part A, 2021, 27, 336-350. Quantitative Craniofacial Analysis and Generation of Human Induced Pluripotent Stem Cells for Muenke Syndrome: A Case Report. Journal of Developmental Biology, 2021, 9, 39.	3.1	3
263 264 265	The Survey on Cellular and Tissue-Engineered Therapies in Europe in 2016 and 2017. Tissue Engineering - Part A, 2021, 27, 336-350. Quantitative Craniofacial Analysis and Generation of Human Induced Pluripotent Stem Cells for Muenke Syndrome: A Case Report. Journal of Developmental Biology, 2021, 9, 39. Transplantation of Bone-Forming Cells., 1998, 8, 459-468. Clinical Vignette: Angiomatosis of Bone With Localized Mineralization Defect. Journal of Bone and	3.1	3 3
263 264 265 266	The Survey on Cellular and Tissue-Engineered Therapies in Europe in 2016 and 2017. Tissue Engineering - Part A, 2021, 27, 336-350. Quantitative Craniofacial Analysis and Generation of Human Induced Pluripotent Stem Cells for Muenke Syndrome: A Case Report. Journal of Developmental Biology, 2021, 9, 39. Transplantation of Bone-Forming Cells., 1998, 8, 459-468. Clinical Vignette: Angiomatosis of Bone With Localized Mineralization Defect. Journal of Bone and Mineral Research, 2001, 16, 1750-1753.	3.1	3 3 2 2
264 265 266 267	The Survey on Cellular and Tissue-Engineered Therapies in Europe in 2016 and 2017. Tissue Engineering - Part A, 2021, 27, 336-350. Quantitative Craniofacial Analysis and Generation of Human Induced Pluripotent Stem Cells for Muenke Syndrome: A Case Report. Journal of Developmental Biology, 2021, 9, 39. Transplantation of Bone-Forming Cells., 1998, 8, 459-468. Clinical Vignette: Angiomatosis of Bone With Localized Mineralization Defect. Journal of Bone and Mineral Research, 2001, 16, 1750-1753. Stem Cells in Tissue Engineering., 2004, , 785-792. Senescence of Cultured Bone Marrow Stromal Cells. Biology of Blood and Marrow Transplantation,	3.1 1.7 2.8	3 3 2 2 2

#	Article	IF	CITATIONS
271	The regulatory role of matrix proteins in mineralization of bone. , 2021, , 165-187.		2
272	Human Models of Skeletal Aging: Introduction. Calcified Tissue International, 1995, 56, S2-S2.	3.1	1
273	Skeletogenesis: In Vitro Analysis of Bone Cell Differentiation. , 2000, 137, 391-397.		1
274	Cell source. , 2008, , 279-306.		1
275	Reply to 'Mesenchymal stem cells: another anti-inflammatory treatment for sepsis?'. Nature Medicine, 2009, 15, 602-602.	30.7	1
276	Stem Cells in Tissue Engineering. , 2013, , 965-972.		1
277	Comparison of bone marrow stromal cell (BMSC) production methods and products from multiple centers. Cytotherapy, 2015, 17, S51.	0.7	1
278	Exercise Can Reverse the Phenotype of Biglycan Deficient Mice. , 2003, , .		1
279	THE CORRELATION OF SPECIFIC ORTHOPAEDIC FEATURES OF POLYOSTOTIC FIBROUS DYSPLASIA WITH FUNCTIONAL OUTCOME SCORES IN CHILDREN. Journal of Bone and Joint Surgery - Series A, 2006, 88, 818-823.	3.0	1
280	The Collagenous and Noncollagenous Proteins of Cells in the Osteoblastic Lineage. Advances in Organ Biology, 1998, 5, 565-589.	0.1	0
281	Profound gonadotropin suppression in adult women with McCune-Albright syndrome. Fertility and Sterility, 2002, 78, S103-S104.	1.0	O
282	Characterization of panoramic radiographic features of maxillo-mandibular fibrous dysplasia in Mccune-Albright Syndrome. Oral Surgery Oral Medicine Oral Pathology Oral Radiology and Endodontics, 2004, 97, 447.	1.4	0
283	Postnatal Stem Cells. , 2007, , 459-468.		0
284	Macrophages Mediate Bone Marrow Stromal Cell Homing to Irradiated Sites. International Journal of Radiation Oncology Biology Physics, 2011, 81, S703.	0.8	0
285	Connective tissue stem and progenitor cells. , 0, , 34-43.		0
286	Postnatal Stem Cells in Tissue Engineering. , 2014, , 639-653.		0
287	The age of subject affects the proliferation and accounts for the major heterogeneity of clinical Bone Marrow Stromal Cells that are manufactured in a single center. Cytotherapy, 2017, 19, S191.	0.7	0
288	Skeletal Stem Cells/Bone Marrow Stromal Cells. , 2018, , 241-260.		0

#	Article	IF	CITATIONS
289	Skeletal Regeneration: Stem Cell Therapy. , 2020, , 119-134.		O
290	Remembering Dr John D Termine. Journal of Bone and Mineral Research, 2020, 36, 1647-1648.	2.8	0
291	Metastasis in the Bone Marrow Microenvironment. Cancer Metastasis - Biology and Treatment, 2004, , 71-85.	0.1	0
292	Postnatal Stem Cells in Tissue Engineering. , 2009, , 583-590.		0
293	Comparative Global Transcriptome Analysis of Bone Marrow Stromal Cells (BMSC), Human Embryonic Stem (hES) Cells and CD34+ Cells Blood, 2009, 114, 36-36.	1.4	0
294	Tracking Senescence In Human Bone Marrow Stromal Cell (BMSC) Cultures Blood, 2010, 116, 1179-1179.	1.4	0
295	Abstract 1360: A mouse model of double heterozygosity for protein kinase A regulatory subunits promotes osteoblastic differentiation of cAMP-induced bone tumors. , 2012, , .		0
296	Abstract 954: COX-2 inhibition reduces bone tumor growth in animal models: A role for celecoxib treatment in cAMP/protein kinase A-induced tumors. , 2012, , .		0
297	MSCs: The Need to Rethink. , 2013, , 43-57.		0
298	Phase 1 Trial Of Bone Marrow Stromal Cells (Bone Marrow-derived MSCS) To Treat Tissue Damage In Allogeneic Stem Cell Transplant Recipients: Biological Markers Correlate With Clinical Responses and Survival. Blood, 2013, 122, 3282-3282.	1.4	0
299	Periosteal stem cell microenvironment compositional and elasticity changes in the vicinity of bone fracture. Biophysical Journal, 2022, 121, 495a.	0.5	0
300	Activated Gsâ [§] pathway and estrogens reveal different subsets of adiponectin-expressing osteoprogenitors within bone marrow stroma. Bone Reports, 2022, 16, 101235.	0.4	0