Sarah A Gleeson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4940028/publications.pdf

Version: 2024-02-01

			218677	3	02126
80		2,026	26		39
paper	'S	citations	h-index		g-index
82		82	82		1639
all do	es	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Microthermometry and noble gas isotope analysis of magmatic fluid inclusions in the Kerman porphyry Cu deposits, Iran: constraints on the source of ore-forming fluids. Mineralium Deposita, 2022, 57, 155-185.	4.1	4
2	Differentiating between hydrothermal and diagenetic carbonate using rare earth element and yttrium (REE+Y) geochemistry: a case study from the Paleoproterozoic George Fisher massive sulfide Zn deposit, Mount Isa, Australia. Mineralium Deposita, 2022, 57, 187-206.	4.1	14
3	Using whole rock and in situ pyrite chemistry to evaluate authigenic and hydrothermal controls on trace element variability in a Zn mineralized Proterozoic subbasin. Geochimica Et Cosmochimica Acta, 2022, 318, 366-387.	3.9	3
4	The Formation of Highly Positive Î 34S Values in Late Devonian Mudstones: Microscale Analysis of Pyrite (Î 34S) and Barite (Î 34S, Î 18O) in the Canol Formation (Selwyn Basin, Canada). Frontiers in Earth Science, 2022, 9, .	1.8	9
5	Using zircon trace element composition to assess porphyry copper potential of the Guichon Creek batholith and Highland Valley Copper deposit, south-central British Columbia. Mineralium Deposita, 2021, 56, 215-238.	4.1	38
6	The mineralogical and lithogeochemical footprint of the George Fisher Zn-Pb-Ag massive sulphide deposit in the Proterozoic Urquhart Shale Formation, Queensland, Australia. Chemical Geology, 2021, 560, 119975.	3.3	8
7	Three-Dimensional and Microstructural Fingerprinting of Gold Nanoparticles at Fluid-Mineral Interfaces. American Mineralogist, 2021, 106, 97-104.	1.9	12
8	Laser ablation split stream for $\langle i \rangle$ in situ $\langle i \rangle$ sulfur isotope and elemental analysis. Journal of Analytical Atomic Spectrometry, 2021, 36, 1118-1124.	3.0	8
9	From exploration to remediation: A microbial perspective for innovation in mining. Earth-Science Reviews, 2021, 216, 103563.	9.1	22
10	RECOGNIZING PORPHYRY COPPER POTENTIAL FROM TILL ZIRCON COMPOSITION: A CASE STUDY FROM THE HIGHLAND VALLEY PORPHYRY DISTRICT, SOUTH-CENTRAL BRITISH COLUMBIA. Economic Geology, 2021, 116, 1035-1045.	3.8	13
11	Hydrodynamic Constraints on Ore Formation by Basinâ€Scale Fluid Flow at Continental Margins: Modelling Zn Metallogenesis in the Devonian Selwyn Basin. Geochemistry, Geophysics, Geosystems, 2021, 22, e2020GC009453.	2.5	3
12	Diagenetic Controls on the Formation of the Anarraaq Clastic-Dominated Zn-Pb-Ag Deposit, Red Dog District, Alaska. Economic Geology, 2021, 116, 1803-1824.	3.8	5
13	The Teena Zn-Pb Deposit (McArthur Basin, Australia). Part II: Carbonate Replacement Sulfide Mineralization During Burial Diagenesis—Implications for Mineral Exploration. Economic Geology, 2021, 116, 1769-1801.	3.8	11
14	The Teena Zn-Pb Deposit (McArthur Basin, Australia). Part I: Syndiagenetic Base Metal Sulfide Mineralization Related to Dynamic Subbasin Evolution. Economic Geology, 2021, 116, 1743-1768.	3.8	10
15	Garnet U-Pb dating of the Yinan Au-Cu skarn deposit, Luxi District, North China Craton: Implications for district-wide coeval Au-Cu and Fe skarn mineralization. Ore Geology Reviews, 2020, 118, 103310.	2.7	26
16	A NEW SUBSEAFLOOR REPLACEMENT MODEL FOR THE MACMILLAN PASS CLASTIC-DOMINANT Zn-Pb \hat{A}_{\pm} Ba DEPOSITS (YUKON, CANADA). Economic Geology, 2020, 115, 953-959.	3.8	24
17	Spatio-temporal evolution of ocean redox and nitrogen cycling in the early Cambrian Yangtze ocean. Chemical Geology, 2020, 554, 119803.	3.3	18
18	Linking Mineralogy to Lithogeochemistry in the Highland Valley Copper District: Implications for Porphyry Copper Footprints. Economic Geology, 2020, 115, 871-901.	3.8	9

#	Article	IF	CITATIONS
19	Mineralogical and Isotopic Characteristics of Sodic-Calcic Alteration in the Highland Valley Copper District, British Columbia, Canada: Implications for Fluid Sources in Porphyry Cu Systems. Economic Geology, 2020, 115, 841-870.	3.8	12
20	The Mineralogical Evolution of the Clastic Dominant-Type Zn-Pb ± Ba Deposits at Macmillan Pass (Yukon, Canada)â€"Tracing Subseafloor Barite Replacement in the Layered Mineralization. Economic Geology, 2020, 115, 961-979.	3.8	11
21	Sulfur Isotope Constraints on the Conditions of Pyrite Formation in the Paleoproterozoic Urquhart Shale Formation and George Fisher Zn-Pb-Ag Deposit, Northern Australia. Economic Geology, 2020, 115, 1003-1020.	3.8	15
22	Coupled partitioning of Au and As into pyrite controls formation of giant Au deposits. Science Advances, 2019, 5, eaav5891.	10.3	64
23	Variability of outcrop magnetic susceptibility and its relationship to the porphyry Cu centers in the Highland Valley Copper district. Ore Geology Reviews, 2019, 107, 201-217.	2.7	13
24	Origin of sulfur and crustal recycling of copper in polymetallic (Cu-Au-Co-Bi-U±ÂAg) iron-oxide-dominated systems of the Great Bear Magmatic Zone, NWT, Canada. Mineralium Deposita, 2018, 53, 353-376.	4.1	5
25	Partitioning of arsenic between hydrothermal fluid and pyrite during experimental siderite replacement. Chemical Geology, 2018, 500, 136-147.	3.3	39
26	Links between seawater paleoredox and the formation of sediment-hosted massive sulphide (SHMS) deposits — Fe speciation and Mo isotope constraints from Late Devonian mudstones. Chemical Geology, 2018, 490, 45-60.	3.3	19
27	Evidence of multiple halogen sources in scapolites from iron oxide-copper-gold (IOCG) deposits and regional Na Cl metasomatic alteration, Norrbotten County, Sweden. Chemical Geology, 2017, 451, 90-103.	3.3	22
28	The origin of Late Devonian (Frasnian) stratiform and stratabound mudstone-hosted barite in the Selwyn Basin, Northwest Territories, Canada. Marine and Petroleum Geology, 2017, 85, 1-15.	3.3	24
29	New U-Pb constraints on the age of the Little Dal Basalts and Gunbarrel-related volcanism in Rodinia. Precambrian Research, 2017, 296, 168-180.	2.7	31
30	A Paleoproterozoic Andean-type iron oxide copper-gold environment, the Great Bear magmatic zone, Northwest Canada. Ore Geology Reviews, 2017, 81, 123-139.	2.7	29
31	In Situ Monazite Dating of Sediment-Hosted Stratiform Copper Mineralization in the Redstone Copper Belt, Northwest Territories, Canada: Cupriferous Fluid Flow Late in the Evolution of a Neoproterozoic Sedimentary Basin. Economic Geology, 2017, 112, 1773-1806.	3.8	8
32	The thermal and chemical evolution of hydrothermal vent fluids in shale hosted massive sulphide (SHMS) systems from the MacMillan Pass district (Yukon, Canada). Geochimica Et Cosmochimica Acta, 2016, 193, 251-273.	3.9	32
33	Open system sulphate reduction in a diagenetic environment – Isotopic analysis of barite (Π34S and Π18O) and pyrite (Π34S) from the Tom and Jason Late Devonian Zn–Pb–Ba deposits, Selwyn Basin, Canada. Geochimica Et Cosmochimica Acta, 2016, 180, 146-163.	3.9	77
34	The Tiger Deposit: A Carbonate-Hosted, Magmatic-Hydrothermal Gold Deposit, Central Yukon, Canada. Economic Geology, 2016, 111, 421-446.	3.8	8
35	Origin of the Breno and Esino dolomites in the western Southern Alps (Italy): Implications for a volcanic influence. Marine and Petroleum Geology, 2016, 69, 38-52.	3.3	27
36	Re-Os dating of pyrite confirms an early diagenetic onset and extended duration of mineralization in the Irish Zn-Pb ore field. Geology, 2015, 43, 143-146.	4.4	44

#	Article	IF	CITATIONS
37	Gold Refining by Bismuth Melts in the Iron Oxide-Dominated NICO Au-Co-Bi (ÂCuÂW) Deposit, NWT, Canada. Economic Geology, 2015, 110, 291-314.	3.8	36
38	Genesis of the Paleoproterozoic NICO iron oxide–cobalt–gold–bismuth deposit, Northwest Territories, Canada: Evidence from isotope geochemistry and fluid inclusions. Precambrian Research, 2015, 268, 168-193.	2.7	18
39	Characterization and dispersal of indicator minerals associated with the Pine Point Mississippi Valley-type (MVT) district, Northwest Territories, Canada. Canadian Journal of Earth Sciences, 2015, 52, 776-794.	1.3	14
40	More than a trace of oxygen: Ichnological constraints on the formation of the giant Zn-Pb-Ag \hat{A}_{\pm} Ba deposits, Red Dog district, Alaska. Geology, 2015, 43, 867-870.	4.4	12
41	The Importance of Siliceous Radiolarian-Bearing Mudstones in the Formation of Sediment-Hosted Zn-Pb ± Ba Mineralization in the Selwyn Basin, Yukon, Canada. Economic Geology, 2015, 110, 2139-2146.	3.8	16
42	The geology of the carbonate-hosted Blende Ag–Pb–Zn deposit, Wernecke Mountains, Yukon, Canada. Mineralium Deposita, 2015, 50, 83-104.	4.1	2
43	Trace Element Geochemistry of Magnetite and Its Relationship to Cu-Bi-Co-Au-Ag-U-W Mineralization in the Great Bear Magmatic Zone, NWT, Canada. Economic Geology, 2014, 109, 1901-1928.	3.8	54
44	The source of halogens in geothermal fluids from the Taupo Volcanic Zone, North Island, New Zealand. Geochimica Et Cosmochimica Acta, 2014, 126, 265-283.	3.9	49
45	Mineralogical characterization of the Nkamouna Co–Mn laterite ore, southeast Cameroon. Mineralium Deposita, 2013, 48, 155-171.	4.1	39
46	Hydrothermal fluid evolution and metal transport in the Kiruna District, Sweden: Contrasting metal behaviour in aqueous and aqueous–carbonic brines. Geochimica Et Cosmochimica Acta, 2013, 102, 89-112.	3.9	48
47	Metallogenic Evolution of the Mackenzie and Eastern Selwyn Mountains of Canada's Northern Cordillera, Northwest Territories: A Compilation and Review. Geoscience Canada, 2013, 40, .	0.8	8
48	Petrography, Mineralogy, and Geochemistry of the Nkamouna Serpentinite: Implications for the Formation of the Cobalt-Manganese Laterite Deposit, Southeast Cameroon. Economic Geology, 2012, 107, 25-41.	3.8	17
49	A basement-interacted fluid in the N81 deposit, Pine Point Pb-Zn District, Canada: Sr isotopic analyses of single dolomite crystals. Mineralium Deposita, 2012, 47, 749-754.	4.1	25
50	The origin of sulfate mineralization and the nature of the BaSO4–SrSO4 solid-solution series in the Ain Allega and El Aguiba ore deposits, Northern Tunisia. Ore Geology Reviews, 2012, 48, 165-179.	2.7	23
51	Biogenic and abiogenic low-Mg calcite (bLMC and aLMC): Evaluation of seawater-REE composition, water masses and carbonate diagenesis. Chemical Geology, 2011, 280, 180-190.	3.3	129
52	The carbonate-hosted willemite prospects of the Zambezi Metamorphic Belt (Zambia). Mineralium Deposita, 2011, 46, 707-729.	4.1	14
53	Timing and thermochemical constraints on multi-element mineralisation at the Nori/RA Cu–Mo–U prospect, Great Bear magmatic zone, Northwest Territories, Canada. Mineralium Deposita, 2010, 45, 549-566.	4.1	23
54	Fluids associated with hydrothermal dolomitization in St. George Group, western Newfoundland, Canada. Geofluids, 2010, 10, 422-437.	0.7	28

#	Article	IF	Citations
55	Cl/Br ratios and stable chlorine isotope analysis of magmatic–hydrothermal fluid inclusions from Butte, Montana and Bingham Canyon, Utah. Mineralium Deposita, 2009, 44, 837-848.	4.1	39
56	Thermochemical sulphate reduction in the Upper Devonian Cairn Formation of the Fairholme carbonate complex (Southâ€West Alberta, Canadian Rockies): evidence from fluid inclusions and isotopic data. Sedimentology, 2009, 56, 439-460.	3.1	23
57	The sources and evolution of mineralising fluids in iron oxide–copper–gold systems, Norrbotten, Sweden: Constraints from Br/Cl ratios and stable Cl isotopes of fluid inclusion leachates. Geochimica Et Cosmochimica Acta, 2009, 73, 5658-5672.	3.9	48
58	Micro-Fourier Transform Infrared (FT-IR) and Î'D value investigation of hydrothermal vein quartz: Interpretation of fluid inclusion Î'D values in hydrothermal systems. Geochimica Et Cosmochimica Acta, 2008, 72, 4595-4606.	3.9	13
59	Acceptance of the SEG Waldemar Lindgren Award for 2007. Economic Geology, 2008, 103, 1386-1387.	3.8	o
60	Fluid inclusion constraints on the origin of the brines responsible for Pb?Zn mineralization at Pine Point and coarse non-saddle and saddle dolomite formation in southern Northwest Territories. Geofluids, 2007, 7, 51-68.	0.7	27
61	Geochemical constraints on the origin of the Kicking Horse and Monarch Mississippi Valley-type lead-zinc ore deposits, southeast British Columbia, Canada. Mineralium Deposita, 2007, 42, 913-935.	4.1	17
62	Development of secondary porosity in the Fairholme carbonate complex (southwest Alberta, Canada). Journal of Geochemical Exploration, 2006, 89, 394-397.	3.2	12
63	Intracratonic crustal seawater circulation and the genesis of subseafloor zinc-lead mineralization in the Irish orefield. Geology, 2005, 33, 805.	4.4	50
64	Zebra dolomitization as a result of focused fluid flow in the Rocky Mountains Fold and Thrust Belt, Canada. Sedimentology, 2005, 52, 1067-1095.	3.1	70
65	Constraints on the source and evolution of mineralising fluids in the Norrbotten Fe oxide-Cu-Au province, Sweden., 2005,, 825-828.		0
66	The Mineralogy and Geochemistry of the Cerro Matoso S.A. Ni Laterite Deposit, Montelibano, Colombia. Economic Geology, 2004, 99, 1197-1213.	3.8	84
67	Infiltration of basinal fluids into high-grade basement, South Norway: sources and behaviour of waters and brines. Geofluids, 2003, 3, 33-48.	0.7	53
68	Surface-derived fluids in basement rocks:inferences from palaeo-hydrothermal systems. Journal of Geochemical Exploration, 2003, 78-79, 61-65.	3.2	11
69	The high-temperature behavior of defect hydrogen species in quartz: Implications for hydrogen isotope studies. American Mineralogist, 2003, 88, 262-270.	1.9	21
70	Petroleum infiltration of high-grade basement, South Norway: Pressure-Temperature-time-composition (P-T-t-X) constraints. Geofluids, 2002, 2, 41-53.	0.7	26
71	The origin and evolution of base metal mineralising brines and hydrothermal fluids, South Cornwall, UK. Geochimica Et Cosmochimica Acta, 2001, 65, 2067-2079.	3.9	55
72	Regional Fluid Flow and Gold Mineralization in the Dalradianof the Sperrin Mountains, Northern Ireland. Economic Geology, 2000, 95, 1389-1416.	3.8	14

#	Article	IF	CITATION
73	Determination of the origin of salinity in granite-related fluids: evidence from chlorine isotopes in fluid inclusions. Journal of Geochemical Exploration, 2000, 69-70, 309-312.	3.2	22
74	From basin to basement: the movement of surface fluids into the crust. Journal of Geochemical Exploration, 2000, 69-70, 527-531.	3.2	15
75	Origin of retrograde fluids in metamorphic rocks. Journal of Geochemical Exploration, 2000, 69-70, 281-285.	3.2	45
76	Postâ€magmatic hydrothermal circulation and the origin of base metal mineralization, Cornwall, UK. Journal of the Geological Society, 2000, 157, 589-600.	2.1	30
77	Regional Fluid Flow and Gold Mineralization in the Dalradian of the Sperrin Mountains, Northern Ireland. Economic Geology, 2000, 95, 1389-1416.	3 . 8	22
78	On the occurrence and wider implications of anomalously low $\hat{I}D$ fluids in quartz veins, South Cornwall, England. Chemical Geology, 1999, 160, 161-173.	3.3	28
79	Improved detection limits for transient signal analysis of fluid inclusions by inductively coupled plasma atomic emission spectrometry using correlated background correction. Analyst, The, 1995, 120, 1421.	3. 5	9
80	Massive sulfide Zn deposits in the Proterozoic did not require euxinia. Geochemical Perspectives Letters, 0, , 19-24.	5.0	20