Piero Andrea Temussi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/493995/publications.pdf

Version: 2024-02-01

178 papers 6,356 citations

71102 41 h-index 71 g-index

191 all docs

191 docs citations

191 times ranked

5004 citing authors

#	Article	IF	CITATIONS
1	Heat and cold denaturation of yeast frataxin: The effect of pressure. Biophysical Journal, 2022, 121, 1502-1511.	0.5	3
2	Recipes for Inducing Cold Denaturation in an Otherwise Stable Protein. Journal of the American Chemical Society, 2022, 144, 7198-7207.	13.7	2
3	Crowding revisited: Open questions and future perspectives. Trends in Biochemical Sciences, 2022, 47, 1048-1058.	7.5	15
4	The seesaw between normal function and protein aggregation: How functional interactions may increase protein solubility. BioEssays, 2021, 43, 2100031.	2.5	4
5	Striking Dependence of Protein Sweetness on Water Quality: The Role of the Ionic Strength. Frontiers in Molecular Biosciences, 2021, 8, 705102.	3.5	1
6	An "onionâ€like―model of protein unfolding: collective versus site specific approaches. ChemPhysChem, 2021, , .	2.1	2
7	The anatomy of unfolding of Yfh1 is revealed by site-specific fold stability analysis measured by 2D NMR spectroscopy. Communications Chemistry, 2021, 4, .	4.5	7
8	RNA as the stone guest of protein aggregation. Nucleic Acids Research, 2020, 48, 11880-11889.	14.5	25
9	Quantifying the thermodynamics of protein unfolding using 2D NMR spectroscopy. Communications Chemistry, 2020, 3, 100.	4.5	15
10	Why does the ${\rm A\hat{l}^2}$ peptide of Alzheimer share structural similarity with antimicrobial peptides?. Communications Biology, 2020, 3, 135.	4.4	33
11	Subatomic structure of hyper-sweet thaumatin D21N mutant reveals the importance of flexible conformations for enhanced sweetness. Biochimie, 2019, 157, 57-63.	2.6	8
12	Generalized View of Protein Folding: In Medio Stat Virtus. Journal of the American Chemical Society, 2019, 141, 2194-2200.	13.7	17
13	The cold denaturation of IscU highlights structure–function dualism in marginally stable proteins. Communications Chemistry, 2018, 1, .	4.5	19
14	The Origin of Unpleasant Aftertastes in Synthetic Sweeteners: A Hypothesis. Frontiers in Molecular Biosciences, 2018, 5, 119.	3.5	2
15	Activity of human kallikrein-related peptidase 6 (KLK6) on substrates containing sequences of basic amino acids. Is it a processing protease?. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2017, 1865, 558-564.	2.3	6
16	The Emperor's new clothes: Myths and truths of in-cell NMR. Archives of Biochemistry and Biophysics, 2017, 628, 114-122.	3.0	32
17	Sweeter and Stronger: Structural-Driven Molecular Design to Enhance Sweetness and Stability of the Single Chain Monellin MNEI. Biophysical Journal, 2017, 112, 53a.	0.5	0
18	An optimized strategy to measure protein stability highlights differences between cold and hot unfolded states. Nature Communications, 2017, 8, 15428.	12.8	38

#	Article	IF	Citations
19	Treats and Tricks: The Magic World of Sweetness. Frontiers for Young Minds, 2017, 5, .	0.8	1
20	Development of 1,2,3-Triazole-Based Sphingosine Kinase Inhibitors and Their Evaluation as Antiproliferative Agents. International Journal of Molecular Sciences, 2017, 18, 2332.	4.1	5
21	Sweeter and stronger: enhancing sweetness and stability of the single chain monellin MNEI through molecular design. Scientific Reports, 2016, 6, 34045.	3.3	38
22	A Hypersweet Protein: Removal of The Specific Negative Charge at Asp21 Enhances Thaumatin Sweetness. Scientific Reports, 2016, 6, 20255.	3.3	33
23	Cold denaturation as a tool to measure protein stability. Biophysical Chemistry, 2016, 208, 4-8.	2.8	58
24	Cold Denaturation Unveiled: Molecular Mechanism of the Asymmetric Unfolding of Yeast Frataxin. ChemPhysChem, 2015, 16, 3599-3602.	2.1	32
25	Selective observation of the disordered import signal of a globular protein by in ell NMR: The example of frataxins. Protein Science, 2015, 24, 996-1003.	7.6	19
26	Revisiting a dogma: the effect of volume exclusion in molecular crowding. Current Opinion in Structural Biology, 2015, 30, 1-6.	5.7	52
27	Trapping a salt-dependent unfolding intermediate of the marginally stable protein Yfh1. Frontiers in Molecular Biosciences, $2014,1,13.$	3.5	9
28	The conformation of enkephalin bound to its receptor: an ââ,¬Å"elusive goalââ,¬Â•becoming reality. Frontiers in Molecular Biosciences, 2014, 1, 14.	3.5	9
29	The kinetics of folding of frataxin. Physical Chemistry Chemical Physics, 2014, 16, 6391.	2.8	17
30	The role of zinc in the stability of the marginally stable IscU scaffold protein. Protein Science, 2014, 23, 1208-1219.	7.6	44
31	Yeast Frataxin Is Stabilized by Low Salt Concentrations: Cold Denaturation Disentangles Ionic Strength Effects from Specific Interactions. PLoS ONE, 2014, 9, e95801.	2.5	21
32	Dissimilar sweet proteins from plants: Oddities or normal components?. Plant Science, 2012, 195, 135-142.	3.6	35
33	The Role of Hydration in Protein Stability: Comparison of the Cold and Heat Unfolded States of Yfh1. Journal of Molecular Biology, 2012, 417, 413-424.	4.2	52
34	Crowding versus molecular seeding: NMR studies of protein aggregation in hen egg white. Journal of Physics Condensed Matter, 2012, 24, 244107.	1.8	8
35	The good taste of peptides. Journal of Peptide Science, 2012, 18, 73-82.	1.4	117
36	Protein aggregation and misfolding: good or evil?. Journal of Physics Condensed Matter, 2012, 24, 244101.	1.8	16

#	Article	IF	Citations
37	The two faces of Janus: functional interactions and protein aggregation. Current Opinion in Structural Biology, 2012, 22, 30-37.	5 . 7	54
38	A natural and readily available crowding agent: NMR studies of proteins in hen egg white. Proteins: Structure, Function and Bioinformatics, 2011, 79, 1408-1415.	2.6	17
39	Determinants of sweetness in proteins: a topological approach. Journal of Molecular Recognition, 2011, 24, 1033-1042.	2.1	36
40	New Insights into the Characteristics of Sweet and Bitter Taste Receptors. International Review of Cell and Molecular Biology, 2011, 291, 191-226.	3.2	14
41	Cystatins: a versatile family. Biomolecular Concepts, 2011, 2, 95-102.	2.2	7
42	Understanding Cold Denaturation: The Case Study of Yfh1. Journal of the American Chemical Society, 2010, 132, 16240-16246.	13.7	42
43	Aggregation Mechanisms of Cystatins: A Comparative Study of Monellin and Oryzacystatin. Biochemistry, 2010, 49, 2805-2810.	2.5	18
44	Of the vulnerability of orphan complex proteins: The case study of the E. coli IscU and IscS proteins. Protein Expression and Purification, 2010, 73, 161-166.	1.3	38
45	Sweet, bitter and umami receptors: a complex relationship. Trends in Biochemical Sciences, 2009, 34, 296-302.	7.5	99
46	Cold Denaturation and Aggregation: A Comparative NMR Study of Titin I28 in Bulk and in a Confined Environment. Journal of the American Chemical Society, 2009, 131, 11662-11663.	13.7	18
47	Cold Denaturation of Yeast Frataxin Offers the Clue to Understand the Effect of Alcohols on Protein Stability. Journal of the American Chemical Society, 2008, 130, 9963-9970.	13.7	59
48	Multiple Receptors or Multiple Sites? Modeling the Human T1R2-T1R3 Sweet Taste Receptor. ACS Symposium Series, 2008, , 147-161.	0.5	5
49	The Sweet Taste Receptor: A Single Receptor with Multiple Sites and Modes of Interaction. Advances in Food and Nutrition Research, 2007, 53, 199-239.	3.0	50
50	Unbiased Cold Denaturation:Â Low- and High-Temperature Unfolding of Yeast Frataxin under Physiological Conditions. Journal of the American Chemical Society, 2007, 129, 5374-5375.	13.7	145
51	Conformationâ Activity Relationship of Neuropeptide S and Some Structural Mutants:Â Helicity Affects Their Interaction with the Receptor. Journal of Medicinal Chemistry, 2007, 50, 4501-4508.	6.4	21
52	Peptides and proteins in a confined environment: NMR spectra at natural isotopic abundance. Journal of Peptide Science, 2007, 13, 342-347.	1.4	14
53	Conformation–activity relationship of peptide T and new pseudocyclic hexapeptide analogs. Journal of Peptide Science, 2007, 13, 413-421.	1.4	5
54	Understanding the binding properties of an unusual metalâ€binding proteinâ€∫â^'â€∫a study of bacterial frataxin. FEBS Journal, 2007, 274, 4199-4210.	4.7	56

#	Article	IF	CITATIONS
55	Toward the Understanding of MNEI Sweetness from Hydration Map Surfaces. Biophysical Journal, 2006, 90, 3052-3061.	0.5	42
56	The Importance of Electrostatic Potential in The Interaction of Sweet Proteins with the Sweet Taste Receptor. Journal of Molecular Biology, 2006, 360, 448-456.	4.2	69
57	Metal detoxification and homeostasis in Antarctic Notothenioids. A comparative survey on evolution, expression and functional properties of fish and mammal metallothioneins. Reviews in Environmental Science and Biotechnology, 2006, 5, 253-267.	8.1	4
58	The \hat{l} ±-to- \hat{l} 2 Conformational Transition of Alzheimer's A \hat{l} 2-(1-42) Peptide in Aqueous Media is Reversible: A Step by Step Conformational Analysis Suggests the Location of \hat{l} 2 Conformation Seeding. ChemBioChem, 2006, 7, 257-267.	2.6	375
59	Metal detoxification and homeostasis in Antarctic Notothenioids. A comparative survey on evolution, expression and functional properties of fish and mammal metallothioneins., 2006,, 369-383.		0
60	Structural and functional studies of vertebrate metallothioneins: cross-talk between domains in the absence of physical contact. Biochemical Journal, 2005, 391, 95-103.	3.7	14
61	Conformation-activity relationship of a novel peptide antibiotic: Structural characterization of dermaseptin DS 01 in media that mimic the membrane environment. Biopolymers, 2005, 80, 688-696.	2.4	11
62	The Interaction of Highly Helical Structural Mutants with the NOP Receptor Discloses the Role of the Address Domain of Nociceptin/Orphanin FQ. Chemistry - A European Journal, 2005, 11, 2061-2070.	3.3	17
63	From oligopeptides to sweet proteins. Journal of Peptide Science, 2005, 11, 262-264.	1.4	2
64	Micro and Macro Models of the Sweet Receptor. Chemical Senses, 2005, 30, i86-i87.	2.0	14
65	Fish and mammalian metallothioneins: a comparative study. Gene, 2005, 345, 21-26.	2.2	33
66	From Small Sweeteners to Sweet Proteins:Â Anatomy of the Binding Sites of the Human T1R2_T1R3 Receptor. Journal of Medicinal Chemistry, 2005, 48, 5520-5529.	6.4	172
67	Antagonism in Opioid Peptides: the Role of Conformation. Current Topics in Medicinal Chemistry, 2004, 4, 147-157.	2.1	13
68	Bacterial IscU is a well folded and functional single domain protein. FEBS Journal, 2004, 271, 2093-2100.	0.2	40
69	Interaction of sweet proteins with their receptor. FEBS Journal, 2004, 271, 2231-2240.	0.2	66
70	Solution Structure of the Bacterial Frataxin Ortholog, CyaY. Structure, 2004, 12, 2037-2048.	3.3	125
71	Protein Stability in Nanocages: A Novel Approach for Influencing Protein Stability by Molecular Confinement. Journal of Molecular Biology, 2004, 336, 203-212.	4.2	73
72	NEW EMBO MEMBER'S REVIEW: From Alzheimer to Huntington: why is a structural understanding so difficult?. EMBO Journal, 2003, 22, 355-361.	7.8	133

#	Article	IF	Citations
73	Phylogenetic Divergence of Fish and Mammalian Metallothionein: Relationships with Structural Diversification and Organismal Temperature. Journal of Molecular Evolution, 2003, 57, S250-S257.	1.8	24
74	Solution Structure of MT_nc, a Novel Metallothionein from the Antarctic Fish Notothenia coriiceps. Structure, 2003, 11, 435-443.	3.3	52
75	The Mechanism of Interaction of Sweet Proteins with the T1R2-T1R3 Receptor: Evidence from the Solution Structure of G16A-MNEI. Journal of Molecular Biology, 2003, 328, 683-692.	4.2	52
76	NMR Studies of Protein Hydration and TEMPOL Accessibility. Journal of Molecular Biology, 2003, 332, 437-447.	4.2	38
77	Environmental Mimic of Receptor Interaction:  Conformational Analysis of CCK-15 in Solution. Journal of Medicinal Chemistry, 2002, 45, 762-769.	6.4	18
78	The SH3 domain of nebulin binds selectively to type II peptides: theoretical prediction and experimental validation. Journal of Molecular Biology, 2002, 316, 305-315.	4.2	22
79	NMR studies of flexible peptides in cavities mimicking the synaptic cleft. FEBS Letters, 2002, 513, 273-276.	2.8	8
80	Why are sweet proteins sweet? Interaction of brazzein, monellin and thaumatin with the T1R2-T1R3 receptor. FEBS Letters, 2002, 526, 1-4.	2.8	138
81	Solution structure of the Alzheimer amyloid βâ€peptide (1–42) in an apolar microenvironment. FEBS Journal, 2002, 269, 5642-5648.	0.2	577
82	Solution structure of nociceptin peptides. Journal of Peptide Science, 2002, 8, 497-509.	1.4	12
83	Solution structure of a sweet protein: NMR study of MNEI, a single chain monellin11Edited by R. Huber. Journal of Molecular Biology, 2001, 305, 505-514.	4.2	67
84	Structural characterization and thermal stability of Notothenia coriiceps metallothionein. Biochemical Journal, 2001, 354, 291.	3.7	19
85	Structural characterization and thermal stability of Notothenia coriiceps metallothionein. Biochemical Journal, 2001, 354, 291-299.	3.7	24
86	Peptide T revisited: conformational mimicry of epitopes of anti-HIV proteins. Journal of Peptide Science, 2001, 7, 197-207.	1.4	5
87	Probing the shape of a hydrophobic pocket in the active site of?-opioid antagonists. Journal of Peptide Science, 2001, 7, 374-385.	1.4	9
88	Probing the surface of a sweet protein: NMR study of MNEI with a paramagnetic probe. Protein Science, 2001, 10, 1498-1507.	7.6	55
89	NMR Studies of Protein Surface Accessibility. Journal of Biological Chemistry, 2001, 276, 42455-42461.	3.4	40
90	Solution structure of nocistatin, a new peptide analgesic. Biopolymers, 2000, 53, 257-264.	2.4	7

#	Article	IF	CITATIONS
91	Pain peptides. Solution structure of orphanin FQ2. FEBS Letters, 2000, 473, 157-160.	2.8	5
92	Tendamistat surface accessibility to the TEMPOL paramagnetic probe. Journal of Biomolecular NMR, 1999, 15, 125-133.	2.8	30
93	Solution structure of dynorphin A (1-17): a NMR study in a cryoprotective solvent mixture at 278 K., 1999, 5, 306-312.		19
94	Neurologically active plant compounds and peptide hormones: a chirality connection. FEBS Letters, 1999, 448, 217-220.	2.8	3
95	Solution Conformation of a Potent Cyclic Analogue of Tuftsin:Â Low- TemperatureÂNuclearÂMagneticÂResonanceÂStudyÂinÂa Cryoprotective Mixture. Journal of Medicinal Chemistry, 1999, 42, 1705-1713.	6.4	4
96	Environmental constraints in the study of flexible segments of proteins. Journal of Biomolecular NMR, 1998, 11, 415-422.	2.8	3
97	Rational design of dynorphin A analogues with \hat{l} -receptor selectivity and antagonism for \hat{l} - and \hat{l} -receptors. Bioorganic and Medicinal Chemistry, 1998, 6, 57-62.	3.0	26
98	Conformational sampling of bioactive conformers: a low-temperature NMR study of 15N-Leu–enkephalin., 1998, 4, 253-265.		25
99	Address and Message Sequences for the Nociceptin Receptor:  A Structureâ [^] Activity Study of Nociceptin-(1â [^] 13)-peptide amide. Journal of Medicinal Chemistry, 1997, 40, 1789-1793.	6.4	224
100	Conformational Analysis of Three NK1 Tripeptide Antagonists:  A Proton Nuclear Magnetic Resonance Study. Journal of Medicinal Chemistry, 1997, 40, 594-601.	6.4	5
101	Solution Conformation of Nociceptin. Biochemical and Biophysical Research Communications, 1997, 233, 640-643.	2.1	24
102	Design of \hat{l} selective opioid dipeptide antagonists. FEBS Letters, 1997, 417, 141-144.	2.8	27
103	Design and Solution Structure of a Partially Rigid Opioid Antagonist Lacking the Basic Center - Models of Antagonism. FEBS Journal, 1997, 247, 66-73.	0.2	24
104	Aspartame dipeptide analogues: effect of number of side-chain methylene group spacers and Cα-methylation in the second position. Tetrahedron: Asymmetry, 1997, 8, 1305-1314.	1.8	39
105	Dmt-Tic-OH, a highly selective and potent $\hat{\Gamma}$ -opioid dipeptide receptor antagonist after systemic administration in the mouse. Life Sciences, 1996, 59, PL93-PL98.	4.3	23
106	δ-Selective Opioid Peptides Containing a Single Aromatic Residue in the Message Domain: An NMR Conformational Analysis. Journal of Peptide Science, 1996, 2, 290-308.	1.4	15
107	Conformational analysis of potent and very selective \hat{l}' opioid dipeptide antagonists. FEBS Letters, 1995, 377, 363-367.	2.8	19
108	Solution and solidâ€state structure of the diketopiperazine of tyrosylâ€tetrahydroisoquinolineâ€3â€carboxylic acid. International Journal of Peptide and Protein Research, 1995, 46, 134-138.	0.1	17

#	Article	IF	CITATIONS
109	\hat{l} Opioidmimetic Antagonists: Prototypes for Designing a New Generation of Ultraselective Opioid Peptides. Molecular Medicine, 1995, 1, 678-689.	4.4	116
110	Conversion of Enkephalin and Dermorphin into delta-Selective Opioid Antagonists by Single-Residue Substitution. FEBS Journal, 1994, 224, 241-247.	0.2	48
111	Selective Opioid Dipeptides. Biochemical and Biophysical Research Communications, 1994, 198, 933-939.	2.1	89
112	Solution conformation of câ€[Glnâ€Trpâ€Pheâ€Glyâ€Leuâ€Met], a NKâ€2 tachykinin antagonist. International Jo of Peptide and Protein Research, 1994, 44, 556-561.	urnal 0.1	3
113	Bioactive and model peptides characterized by the helicogenic (αMe)Phe residue. Tetrahedron, 1993, 49, 3641-3653.	1.9	44
114	Relationship between receptor affinity and topography of N-terminally extended and bridged [Tyr1 â†' Asp4]deltorphin C analogues: Novel probes for the l'-opioid receptor. European Journal of Pharmacology, 1993, 230, 357-361.	3. 5	3
115	Solution Conformation of CCK9, a Cholecystokinin Analog. Biochemical and Biophysical Research Communications, 1993, 190, 741-746.	2.1	23
116	Conformationally restricted analogues of anti-aspartame-type sweeteners. Journal of the Chemical Society Perkin Transactions II, 1992, , 1945.	0.9	11
117	Solution conformation of tuftsin. Biochemistry, 1992, 31, 9581-9586.	2.5	16
118	Structural determination of the active site of a sweet protein A1H NMR investigation of pMNEI. FEBS Letters, 1992, 310, 27-30.	2.8	67
119	SAR of Sweet Molecules: Conformational Analysis of Two Hypersweet and Two Conformationally Restricted Aspartame Analogues. QSAR and Combinatorial Science, 1992, 11, 486-491.	1.2	13
120	Conformational analysis of an opioid peptide in solvent media that mimic cytoplasm viscosity. Biopolymers, 1992, 32, 367-372.	2.4	34
121	Conformation-activity relationship of tachykinin neurokinin A(4-10) and of some [Xaa8] analogs. Biochemistry, 1991, 30, 10175-10181.	2.5	28
122	A proton NMR study of human calcitonin in solution. Biochemistry, 1991, 30, 2364-2371.	2.5	43
123	Reversible screw sense inversion of the 310-helix in a dehydropeptide. Journal of the American Chemical Society, 1991, 113, 6338-6340.	13.7	55
124	Viscosity as a conformational sieve. NOE of linear peptides in cryoprotective mixtures. Journal of Magnetic Resonance, 1991, 95, 201-207.	0.5	29
125	lon binding of cyclolinopeptide A: An nmr and CD conformational study. Biopolymers, 1991, 31, 761-767.	2.4	29
126	Conformational preferences of [Leu5]enkephalin in biomimetic media. Investigation by 1H NMR. FEBS Journal, 1990, 192, 433-439.	0.2	70

#	Article	IF	Citations
127	Conformation-activity relationship of sweet molecules. Comparison of aspartame and naphthimidazolesulfonic acids. Journal of Medicinal Chemistry, 1990, 33, 514-520.	6.4	41
128	New features of the \hat{l} opioid receptor: Conformational properties of deltorphin I analogues. Biochemical and Biophysical Research Communications, 1990, 169, 617-622.	2.1	43
129	Cyclic hexapeptides related to somatostatin Conformational analysis employing ¹ Hâ€NMR and molecular dynamics. International Journal of Peptide and Protein Research, 1990, 36, 418-432.	0.1	23
130	Bioactive conformation of linear peptides in solution: An elusive goal?. Biopolymers, 1989, 28, 91-107.	2.4	46
131	Nmr studies of a series of dehydrodermorphins. Biopolymers, 1989, 28, 129-138.	2.4	20
132	Conformational analysis of peptide T and of its C-pentapeptide fragment. Biopolymers, 1989, 28, 479-486.	2.4	24
133	Bioactive peptides: solid-state and solution conformation of cyclolinopeptide A. Journal of the American Chemical Society, 1989, 111, 9089-9098.	13.7	78
134	Sequential proton NMR assignment and secondary structure determination of salmon calcitonin in solution. Biochemistry, 1989, 28, 7996-8002.	2.5	41
135	Conformational properties of deltorphin: New features of the Î'-opioid receptor. FEBS Letters, 1989, 247, 283-288.	2.8	38
136	Low temperature nmr studies of leu-enkephalins in cryoprotective solvents Tetrahedron, 1988, 44, 975-990.	1.9	28
137	A 500 MHz study of peptide T in a DMSO solution. FEBS Letters, 1988, 231, 159-163.	2.8	29
138	Nuclear Overhauser effects in linear peptides A low-temperature 500 MHz study of Met-enkephalin. FEBS Letters, 1987, 215, 215-218.	2.8	25
139	Experimental attempt to simulate receptor site environment. A 500-MHz proton nuclear magnetic resonance study of enkephalin amides. Biochemistry, 1987, 26, 7856-7863.	2.5	40
140	A 500-MHz proton nuclear magnetic resonance study of .mu. opioid peptides in a simulated receptor environment. Journal of Medicinal Chemistry, 1987, 30, 2067-2073.	6.4	46
141	NOE measurements on linear peptides in cryoprotective aqueous mixtures. Journal of Magnetic Resonance, 1987, 75, 364-370.	0.5	24
142	Structureâ€activity relationship of a bitter diketopiperazine revisited. Biopolymers, 1985, 24, 1629-1633.	2.4	5
143	A conformational study of the opioid peptide dermorphin by one-dimensional and two-dimensional nuclear magnetic resonance spectroscopy. Biophysical Journal, 1985, 48, 195-200.	0.5	18
144	Soft agonist receptor interactions: Theoretical and experimental simulation of the active site of the receptor of sweet molecules. International Journal of Quantum Chemistry, 1984, 26, 889-906.	2.0	26

#	Article	IF	CITATIONS
145	Experimental simulation of the environment of the δopioid receptor. A 500 MHz study of enkephalins in CDCl3. Biochemical and Biophysical Research Communications, 1984, 121, 456-462.	2.1	15
146	Influence of the Ionic Environment on the Conformation of Aspartic Acid and Possible Relevance to Its Neurotransmitter Action. Journal of Neurochemistry, 1983, 40, 903-907.	3.9	2
147	Interaction of conformationally flexible agonists with the active site of sweet taste. A study of arylureas. Journal of Medicinal Chemistry, 1983, 26, 1060-1065.	6.4	14
148	Study of the binding of jatrophone to Escherichia coli s-ribonucleic acid. FEBS Letters, 1983, 164, 51-56.	2.8	5
149	Interaction of Oxidized and Reduced Uteroglobin with Progesterone. FEBS Journal, 1982, 122, 101-104.	0.2	22
150	Conformational changes of aspartate induced by high salt concentrations. Advances in Molecular Relaxation and Interaction Processes, 1982, 24, 15-26.	0.5	2
151	Interaction of S-carboxymethylated uteroglobin with progesterone. Biochemistry, 1980, 19, 3287-3293.	2.5	16
152	Three-dimensional mapping of the bitter taste receptor site. Chemical Senses, 1979, 4, 259-265.	2.0	15
153	Carbon Magnetic Resonance Studies of the Self-Aggregation of Calf Thymus Histones. FEBS Journal, 1979, 100, 219-224.	0.2	2
154	Collision complexes. 2. A proton nuclear magnetic resonance study of the complex caffeine-benzene. The Journal of Physical Chemistry, 1979, 83, 1766-1770.	2.9	4
155	Collision complexes. 3. A proton nuclear magnetic resonance study of the complexes caffeine-mesitylene and caffeine-diphenylmethane. The Journal of Physical Chemistry, 1979, 83, 2902-2906.	2.9	5
156	Three-dimensional mapping of the sweet taste receptor site. Journal of Medicinal Chemistry, 1978, 21, 1154-1158.	6.4	68
157	The interaction of histone H3 with histone H4 and with other histones studied by 19F nuclear magnetic resonance. Biochimica Et Biophysica Acta (BBA) - Protein Structure, 1977, 492, 12-19.	1.7	12
158	Interaction of .alphaL-aspartyl-L-phenylalanine methyl ester with the receptor site of the sweet taste bud. Journal of the American Chemical Society, 1976, 98, 6669-6675.	13.7	58
159	Interaction forces between tetramethyluric acid and aromatic molecules. A proton nuclear magnetic resonance study. The Journal of Physical Chemistry, 1976, 80, 279-282.	2.9	8
160	A Study of Calf-Thymus Histone H2B Using 13C Magnetic Resonance. FEBS Journal, 1976, 70, 403-408.	0.2	17
161	Structural characterization of thermal prebiotic polypeptides. Journal of Molecular Evolution, 1976, 7, 105-110.	1.8	15
162	NMR studies of prebiotic polypeptides. Origins of Life and Evolution of Biospheres, 1975, 6, 147-153.	0.6	27

#	Article	IF	CITATIONS
163	Automatic comparison of the sequences of calf thymus histones. Journal of Theoretical Biology, 1975, 50, 25-33.	1.7	11
164	Model ligands for copper proteins. Proton magnetic resonance study of acetylhistamine and acetylhistidine complexes with copper(I). Journal of the American Chemical Society, 1975, 97, 1572-1575.	13.7	13
165	Solvent dependence of the helix-coil transition of poly-?-benzyl-L-glutamate. A PMR study. Biopolymers, 1973, 12, 1451-1458.	2.4	2
166	N.m.r. studies of the helix-coil transition of polypeptides in non-protonating solvent mixtures. Polymer, 1973, 14, 303-308.	3.8	15
167	Conformational Studies of Random DL Copolypeptides in Solution Using High-Resolution Nuclear Magnetic Resonance. Macromolecules, 1973, 6, 831-838.	4.8	6
168	Nuclear magnetic resonance studies of a polypeptide in a nonprotonating solvent system. Journal of the American Chemical Society, 1973, 95, 1683-1684.	13.7	18
169	Experimental evidence for the assignment of .alphaCH peaks in the nuclear magnetic resonance spectra of polypeptides. Journal of the American Chemical Society, 1971, 93, 5916-5918.	13.7	22
170	Conformational Transition in Oligopeptides: An NMR Spectroscopic Study. Proceedings of the National Academy of Sciences of the United States of America, 1971, 68, 1767-1772.	7.1	19
171	Conformational rigidity of the amide bond. Variable-temperature nuclear magnetic resonance study of the system Ag+-N,N-dimethylacetamide. The Journal of Physical Chemistry, 1969, 73, 4227-4232.	2.9	30
172	Conformational isomerization of 4,6,10,11,15,17,21,22,23,24,25,26,27,28-tetradecamethylpentacyclo-[16,2,2,1,2,1]octacosa-3,5,7,9,11,14,16,1 Chemical Communications / Chemical Society, London, 1968, , 1645.	.8, @0, 22,2	3, 2 6-dodecae
173	Complexes of amides with cations of low charge density: 1H nuclear magnetic resonance study of the Ag+-dimethylacetamide complex. Chemical Communications / Chemical Society, London, 1968, , 844.	0.1	1
174	Mechanism of isomerization of methyl nitrite. The Journal of Physical Chemistry, 1968, 72, 3581-3583.	2.9	4
175	Crystal structure of racemic .alpha.,.alpha.'-dimethylglutaric acid. The Journal of Physical Chemistry, 1968, 72, 3997-4004.	2.9	3
176	Crystal structure of syndiotactic polypropylene. Journal of Polymer Science Part C Polymer Symposia, 1967, 16, 2477-2484.	0.1	162
177	Molecular structures of some low molecular weight model compounds with conformational features similar to those of high molecular weight compounds. Journal of Polymer Science Part C Polymer Symposia, 1967, 16, 2877-2880.	0.1	6
178	Conformational isomerization of hexahydro-1,3,5-trimethyl-1,3,5-triazine. Journal of the American Chemical Society, 1967, 89, 4358-4361.	13.7	24