Stefano Protti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4939622/publications.pdf

Version: 2024-02-01

150 papers 5,541 citations

36 h-index 98798 67 g-index

177 all docs

177 docs citations

177 times ranked

5075 citing authors

#	Article	IF	CITATIONS
1	The Photoinduced Electrocyclization Reaction of Triphenylamine (TPA) in Sustainable and Confined Micellar Solutions: A Steadyâ€State and Laser Flash Photolysis Approach. ChemPhotoChem, 2022, 6, .	3.0	6
2	Aryl–Cl vs heteroatom–Si bond cleavage on the route to the photochemical generation of If,I€-heterodiradicals. Photochemical and Photobiological Sciences, 2022, 21, 667-685.	2.9	3
3	Proton-controlled Action of an Imidazole as Electron Relay in a Photoredox Triad. Photochemical and Photobiological Sciences, 2022, 21, 247-259.	2.9	2
4	Electrochemical analysis and characterization of psychoactive substances glaucine and tetrahydropalmatine. Journal of Electroanalytical Chemistry, 2022, 907, 116032.	3.8	5
5	Visible Light-Driven, Gold(I)-Catalyzed Preparation of Symmetrical (Hetero)biaryls by Homocoupling of Arylazo Sulfones. Journal of Organic Chemistry, 2022, 87, 4863-4872.	3.2	10
6	Diradicals Photogeneration from Chloroaryl‧ubstituted Carboxylic Acids. Chemistry - A European Journal, 2022, 28, .	3.3	2
7	A special issue dedicated to Angelo Albini on the occasion of his 75th birthday. Photochemical and Photobiological Sciences, 2022, , $1.$	2.9	O
8	Designing radical chemistry by visible light-promoted homolysis. Trends in Chemistry, 2022, 4, 305-317.	8.5	21
9	Fluorescent silica MCM-41 nanoparticles based on flavonoids: Direct post-doping encapsulation and spectral characterization. Dyes and Pigments, 2021, 185, 108870.	3.7	3
10	Metal-Free Trifluoromethylthiolation of Arylazo Sulfones. Journal of Organic Chemistry, 2021, 86, 1292-1299.	3.2	18
11	2.6 Generation of Carbon-Centered Radicals by Photochemical Methods. , 2021, , .		O
12	Electron spectroscopies of 3-hydroxyflavone and 7-hydroxyflavone in MCM-41 silica nanoparticles and in acetonitrile solutions. Experimental data and DFT/TD-DFT calculations. Data in Brief, 2021, 34, 106630.	1.0	1
13	Photochemistry of Tris(2,4â€dibromophenyl)amine and its Application to Coâ€oxidation on Sulfides and Phosphines ^{â€} . Photochemistry and Photobiology, 2021, 97, 1278-1288.	2.5	8
14	Photohomolysis and Photoheterolysis in Aryl Sulfonates and Aryl Phosphates. Chemistry - A European Journal, 2021, 27, 6315-6323.	3.3	4
15	Power-to-X: Lighting the Path to a Net-Zero-Emission Future. ACS Sustainable Chemistry and Engineering, 2021, 9, 7179-7181.	6.7	39
16	Visibleâ€Lightâ€Driven Competitive Stereo―and Regioisomerization of (<i>E</i>)â€Î²â€Nitroenones. ChemPhotoChem, 2021, 5, 871-875.	3.0	7
17	Dyedauxiliary Group Strategy for the $\hat{l}\pm$ -Functionalization of Ketones and Esters. ACS Organic & Inorganic Au, 2021, 1, 68-71.	4.0	14
18	Electrochemical characterization and voltammetric determination of aryl piperazine emerging as designer drugs. Journal of Electroanalytical Chemistry, 2021, 895, 115480.	3.8	7

#	Article	IF	CITATIONS
19	Blue light driven free-radical polymerization using arylazo sulfones as initiators. Polymer Chemistry, 2021, 12, 5747-5751.	3.9	8
20	Photochemistry of triphenylamine (TPA) in homogeneous solution and the role of transient $\langle i \rangle N \langle i \rangle$ -phenyl-4 $\langle i \rangle a \langle i \rangle \langle i \rangle$ -dihydrocarbazole. A steady-state and time-resolved investigation. New Journal of Chemistry, 2021, 45, 16581-16593.	2.8	6
21	Photons at Play: Photocatalysis in Sustainable Chemistry. A Joint Virtual Special Issue by ACS Catalysis and ACS Sustainable Chemistry & Engineering. ACS Sustainable Chemistry and Engineering, 2021, 9, 13125-13127.	6.7	1
22	Photochemistry of Cannabidiol (CBD) Revised. A Combined Preparative and Spectrometric Investigation. Journal of Natural Products, 2021, 84, 2858-2865.	3.0	18
23	Smooth Metalâ€Free Photoinduced Preparation of Valuable 8â€Arylxanthines. European Journal of Organic Chemistry, 2020, 2020, 1448-1452.	2.4	16
24	Diastereoselective Isomerization of (E)â€Î²â€Nitroenones into βâ€Nitroâ€Î²,γâ€Unsaturated Ketones under Microwave Conditions. Advanced Synthesis and Catalysis, 2020, 362, 4680-4686.	4.3	7
25	Metalâ€Free Synthesis of Unsymmetrical Aryl Selenides and Tellurides via Visible Lightâ€Driven Activation of Arylazo Sulfones. European Journal of Organic Chemistry, 2020, 2020, 7358-7367.	2.4	30
26	Dyedauxiliary Groups, an Emerging Approach in Organic Chemistry. The Case of Arylazo Sulfones. Journal of Organic Chemistry, 2020, 85, 12813-12822.	3.2	33
27	Metal-free synthesis of biarenes via photoextrusion in di(tri)aryl phosphates. Beilstein Journal of Organic Chemistry, 2020, 16, 3008-3014.	2.2	2
28	Leaving Groups in Metalâ€Free Arylations: Make Your Choice!. European Journal of Organic Chemistry, 2020, 2020, 5292-5304.	2.4	11
29	Photocatalyzed syntheses of phenanthrenes and their aza-analogues. A review. Beilstein Journal of Organic Chemistry, 2020, 16, 1476-1488.	2.2	19
30	Aryldiazenyl Radicals from Arylazo Sulfones: Visible Lightâ€Driven Diazenylation of Enol Silyl Ethers. Advanced Synthesis and Catalysis, 2020, 362, 2150-2154.	4.3	22
31	Simultaneous Photografting of Two Organic Groups on a Gold Surface by using Arylazo Sulfones as Single Precursors. Langmuir, 2020, 36, 2786-2793.	3.5	14
32	Visible Lightâ€Driven, Photocatalystâ€Free Arbuzovâ€Like Reaction via Arylazo Sulfones. Advanced Synthesis and Catalysis, 2019, 361, 5239-5244.	4.3	30
33	<i>ACS Sustainable Chemistry & Description of Biomass to Fine and Platform Chemicals. ACS Sustainable Chemistry and Engineering, 2019, 7, 13584-13585.</i>	6.7	0
34	Visible-Light-Driven Synthesis of 1,3,4-Trisubstituted Pyrroles from Aryl Azides. Organic Letters, 2019, 21, 7782-7786.	4.6	20
35	Photoredox-Catalyzed Generation of Acetonyl Radical in Flow: Theoretical Investigation and Synthetic Applications. ACS Catalysis, 2019, 9, 2493-2500.	11.2	25
36	Photogenerated acyl/alkoxycarbonyl/carbamoyl radicals for sustainable synthesis. Green Chemistry, 2019, 21, 748-764.	9.0	142

3

#	Article	IF	CITATIONS
37	Wavelength dependence and wavelength selectivity in photochemical reactions. Photochemical and Photobiological Sciences, 2019, 18, 2094-2101.	2.9	56
38	Visible-Light-Driven Synthesis of Arylstannanes from Arylazo Sulfones. Organic Letters, 2019, 21, 5187-5191.	4.6	43
39	Hydro/Deutero Deamination of Arylazo Sulfones under Metal- and (Photo)Catalyst-Free Conditions. Molecules, 2019, 24, 2164.	3.8	20
40	Acid Catalyzed Formation of C-C and C-S Bonds via Excited State Proton Transfer. Molecules, 2019, 24, 1318.	3.8	9
41	Visible Light-Promoted Formation of C–B and C–S Bonds under Metal- and Photocatalyst-Free Conditions. Synthesis, 2019, 51, 1243-1252.	2.3	40
42	Solvent effects on the vibrational spectrum of 3-hydroxyflavone. Journal of Molecular Liquids, 2019, 275, 723-728.	4.9	10
43	Critical assessment of solvent effects on absorption and fluorescence of 3HF in acetonitrile in the QM/PCM framework: A synergic computational and experimental study. Journal of Molecular Structure, 2019, 1182, 283-291.	3.6	10
44	Photocatalytic Fluorination Reactions. , 2019, , 183-221.		0
45	Photoorganocatalysis in Organic Synthesis. Catalytic Science Series, 2019, , .	0.0	30
46	Aromatics and Cyanoaromatics. Catalytic Science Series, 2019, , 71-111.	0.0	0
46	Aromatics and Cyanoaromatics. Catalytic Science Series, 2019, , 71-111. Aryl Sulfonates as Initiators for Extreme Ultraviolet Lithography: Applications in Epoxyâ€Based Hybrid Materials. ChemPhotoChem, 2018, 2, 425-432.	0.0	9
	Aryl Sulfonates as Initiators for Extreme Ultraviolet Lithography: Applications in Epoxyâ€Based Hybrid		
47	Aryl Sulfonates as Initiators for Extreme Ultraviolet Lithography: Applications in Epoxyâ∈Based Hybrid Materials. ChemPhotoChem, 2018, 2, 425-432. ⟨i⟩N⟨/i⟩-Aryltrifluoromethanesulfonimides as new trifluoromethylating agents for the (photo)catalyst-free functionalization of (hetero)aromatics. Chemical Communications, 2018, 54,	3.0	9
47	Aryl Sulfonates as Initiators for Extreme Ultraviolet Lithography: Applications in Epoxyâ∈Based Hybrid Materials. ChemPhotoChem, 2018, 2, 425-432. ⟨i>N-Aryltrifluoromethanesulfonimides as new trifluoromethylating agents for the (photo)catalyst-free functionalization of (hetero)aromatics. Chemical Communications, 2018, 54, 4144-4147. Polarizable QM/Classical Approaches for the Modeling of Solvation Effects on UV–Vis and	3.0	9 22
47 48 49	Aryl Sulfonates as Initiators for Extreme Ultraviolet Lithography: Applications in Epoxyâ∈Based Hybrid Materials. ChemPhotoChem, 2018, 2, 425-432. ⟨i⟩N⟨ i⟩-Aryltrifluoromethanesulfonimides as new trifluoromethylating agents for the (photo)catalyst-free functionalization of (hetero)aromatics. Chemical Communications, 2018, 54, 4144-4147. Polarizable QM/Classical Approaches for the Modeling of Solvation Effects on UV–Vis and Fluorescence Spectra: An Integrated Strategy. Journal of Physical Chemistry A, 2018, 122, 390-397. Photochemical Co-Oxidation of Sulfides and Phosphines with Tris(⟨i⟩p⟨ i⟩-bromophenyl)amine. A	3.0 4.1 2.5	9 22 20
47 48 49 50	Aryl Sulfonates as Initiators for Extreme Ultraviolet Lithography: Applications in Epoxyâ€Based Hybrid Materials. ChemPhotoChem, 2018, 2, 425-432. ⟨i>N-Aryltrifluoromethanesulfonimides as new trifluoromethylating agents for the (photo)catalyst-free functionalization of (hetero)aromatics. Chemical Communications, 2018, 54, 4144-4147. Polarizable QM/Classical Approaches for the Modeling of Solvation Effects on UV–Vis and Fluorescence Spectra: An Integrated Strategy. Journal of Physical Chemistry A, 2018, 122, 390-397. Photochemical Co-Oxidation of Sulfides and Phosphines with Tris(⟨i>p-bromophenyl)amine. A Mechanistic Study. Journal of Organic Chemistry, 2018, 83, 8104-8113.	3.0 4.1 2.5 3.2	9 22 20 13
47 48 49 50	Aryl Sulfonates as Initiators for Extreme Ultraviolet Lithography: Applications in Epoxyâ€Based Hybrid Materials. ChemPhotoChem, 2018, 2, 425-432. ⟨i⟩N⟨ʃi⟩-Aryltrifluoromethanesulfonimides as new trifluoromethylating agents for the (photo)catalyst-free functionalization of (hetero)aromatics. Chemical Communications, 2018, 54, 4144-4147. Polarizable QM/Classical Approaches for the Modeling of Solvation Effects on UV–Vis and Fluorescence Spectra: An Integrated Strategy. Journal of Physical Chemistry A, 2018, 122, 390-397. Photochemical Co-Oxidation of Sulfides and Phosphines with Tris(⟨i⟩p⟨ʃi⟩-bromophenyl)amine. A Mechanistic Study. Journal of Organic Chemistry, 2018, 83, 8104-8113. Multi-Step Continuous Flow Synthesis of β∫î³-Substituted Ketones. ChemPhotoChem, 2018, 2, 847-850. Flow Photochemistry of Azosulfones: Application of "Sunflow―Reactors. ChemPhotoChem, 2018, 2,	3.0 4.1 2.5 3.2	9 22 20 13 8

#	Article	IF	Citations
55	Photochemical synthesis: Using light to build C–C bonds under mild conditions. Comptes Rendus Chimie, 2017, 20, 261-271.	0.5	23
56	<i>N</i> â€Arylsulfonimides as Photoinitiators for Cationic Polymerization of Epoxy Solâ€Gel Materials. ChemistrySelect, 2017, 2, 3633-3636.	1.5	6
57	Targeting Photochemical Scalpels or Lancets in the Photodynamic Therapy Fieldâ€"The Photochemist's Role. Photochemistry and Photobiology, 2017, 93, 1139-1153.	2.5	20
58	Singlet vs Triplet Reactivity of Photogenerated \hat{l}_{\pm} , $\langle i \rangle n \langle i \rangle$ -Didehydrotoluenes. Journal of Organic Chemistry, 2017, 82, 6592-6603.	3.2	10
59	Design Consideration of Continuous-Flow Photoreactors. , 2017, , 1-36.		6
60	Phenyl cation: A versatile intermediate. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 339, 103-113.	3.9	23
61	Photocatalystâ€free, Visible Light Driven, Gold Promoted Suzuki Synthesis of (Hetero)biaryls. ChemCatChem, 2017, 9, 4456-4459.	3.7	51
62	Sugar-Assisted Photogeneration of Didehydrotoluenes from Chlorobenzylphosphonic Acids. Journal of Organic Chemistry, 2017, 82, 12162-12172.	3.2	3
63	A Visibleâ€Lightâ€Driven, Metalâ€free Route to Aromatic Amides via Radical Arylation of Isonitriles. Advanced Synthesis and Catalysis, 2017, 359, 3826-3830.	4.3	49
64	Visible Light Promoted Metal- and Photocatalyst-Free Synthesis of Allylarenes. Journal of Organic Chemistry, 2017, 82, 10687-10692.	3.2	50
65	Light-driven electron transfer in a modular assembly of a ruthenium(II) polypyridine sensitiser and a manganese(II) terpyridine unit separated by a redox active linkage. DFT analysis. Comptes Rendus Chimie, 2017, 20, 323-332.	0.5	2
66	Flow Metalâ€Free ArC Bond Formation <i>via</i> Photogenerated Phenyl Cations. Advanced Synthesis and Catalysis, 2016, 358, 1164-1172.	4.3	18
67	Carbon–Carbon Bond Forming Reactions via Photogenerated Intermediates. Chemical Reviews, 2016, 116, 9850-9913.	47.7	867
68	Photochemistry of <i>N</i> â€Arylsulfonimides: An Easily Available Class of Nonionic Photoacid Generators (PAGs). Chemistry - A European Journal, 2016, 22, 16998-17005.	3.3	20
69	Wavelength Selective Generation of Aryl Radicals and Aryl Cations for Metal-Free Photoarylations. Journal of Organic Chemistry, 2016, 81, 9612-9619.	3.2	76
70	Photoinduced Multicomponent Reactions. Angewandte Chemie - International Edition, 2016, 55, 15476-15484.	13.8	174
71	Application of Visible and Solar Light in Organic Synthesis. Lecture Notes in Quantum Chemistry II, 2016, , 281-342.	0.3	6
72	Photoinduzierte Mehrkomponentenreaktionen. Angewandte Chemie, 2016, 128, 15702-15711.	2.0	36

#	Article	IF	CITATIONS
73	Decatungstate Anion for Photocatalyzed "Window Ledge―Reactions. Accounts of Chemical Research, 2016, 49, 2232-2242.	15.6	244
74	On the Route to the Photogeneration of Heteroaryl Cations. The Case of Halothiophenes. Journal of Organic Chemistry, 2016, 81, 6336-6342.	3.2	4
75	Reactive Oxygen Species (ROS)-vs Peroxyl-Mediated Photosensitized Oxidation of Triphenylphosphine: A Comparative Study. Journal of Organic Chemistry, 2016, 81, 11678-11685.	3.2	21
76	(Hetero)aromatics from dienynes, enediynes and enyne–allenes. Chemical Society Reviews, 2016, 45, 4364-4390.	38.1	70
77	Paradigms in Green Chemistry and Technology. Springer Briefs in Molecular Science, 2016, , .	0.1	12
78	A ï‰-mercaptoundecylphosphonic acid chemically modified gold electrode for uranium determination in waters in presence of organic matter. Talanta, 2016, 151, 119-125.	5.5	22
79	Activation of Chemical Substrates in Green Chemistry. Springer Briefs in Molecular Science, 2016, , 25-61.	0.1	2
80	Decatungstate Photocatalyzed Acylations and Alkylations in Flow $v < i > ia < i> Hydrogen Atom Transfer. Advanced Synthesis and Catalysis, 2015, 357, 3687-3695.$	4.3	65
81	Energy and Molecules from Photochemical/Photocatalytic Reactions. An Overview. Molecules, 2015, 20, 1527-1542.	3.8	17
82	Photogenerated \hat{l}_{\pm} , $\langle i \rangle$ n $\langle i \rangle$ -Didehydrotoluenes from Chlorophenylacetic Acids at Physiological pH. Journal of Organic Chemistry, 2015, 80, 852-858.	3.2	10
83	Preparation of (substituted) picenes via solar light-induced Mallory photocyclization. RSC Advances, 2015, 5, 27470-27475.	3.6	12
84	Pyrrolidinium-based Ionic Liquids: Aquatic Ecotoxicity, Biodegradability, and Algal Subinhibitory Stimulation. ACS Sustainable Chemistry and Engineering, 2015, 3, 1860-1865.	6.7	32
85	Conditions and Edges for the Photochemical Generation of Short-Lived Aryl Cations: A Computational Approach. Synlett, 2015, 26, 471-478.	1.8	12
86	Solvent effects on the photophysics and photoreactivity of 3-hydroxyflavone: A combined spectroscopic and kinetic study. Journal of Molecular Liquids, 2015, 205, 110-114.	4.9	35
87	Photocatalytic CH Activation by Hydrogenâ€Atom Transfer in Synthesis. ChemCatChem, 2015, 7, 1516-1523.	3.7	140
88	Aryl tosylates as non-ionic photoacid generators (PAGs): photochemistry and applications in cationic photopolymerizations. RSC Advances, 2015, 5, 33239-33248.	3.6	22
89	Toward a Green Atom Economy: Development of a Sustainable Multicomponent Reaction. Synthesis, 2015, 47, 2385-2390.	2.3	18
90	Flow Synthesis of Substituted $\hat{I}^3 \in \text{Lactones}$ by Consecutive Photocatalytic/Reductive Reactions. Advanced Synthesis and Catalysis, 2014, 356, 753-758.	4.3	33

#	Article	IF	Citations
91	(Co)oxidation/cyclization processes upon irradiation of triphenylamine. Tetrahedron Letters, 2014, 55, 2932-2935.	1.4	11
92	Competing Pathways in the Photogeneration of Didehydrotoluenes from (Trimethylsilylmethyl)aryl Sulfonates and Phosphates. Chemistry - A European Journal, 2014, 20, 17572-17578.	3.3	8
93	Aryl Imidazylates and Aryl Sulfates As Electrophiles in Metal-Free ArS _N 1 Reactions. Journal of Organic Chemistry, 2014, 79, 11527-11533.	3.2	21
94	Methoxy-Substituted $\hat{l}_{+,n-Didehydrotoluenes}$. Photochemical Generation and Polar vs Diradical Reactivity. Journal of the American Chemical Society, 2014, 136, 13874-13881.	13.7	11
95	Photocatalytic generation of solar fuels from the reduction of H ₂ O and CO ₂ : a look at the patent literature. Physical Chemistry Chemical Physics, 2014, 16, 19790.	2.8	100
96	ï‰-Thio nitrilotriacetic chemically modified gold electrode for iron determination in natural waters with different salinity. Talanta, 2014, 130, 90-95.	5.5	9
97	Electrochemistry and analytical determination of lysergic acid diethylamide (LSD) via adsorptive stripping voltammetry. Talanta, 2014, 130, 456-461.	5.5	23
98	Metal-free arylations via photochemical activation of the Ar–OSO2R bond in aryl nonaflates. Green Chemistry, 2013, 15, 2704.	9.0	17
99	Alkoxy substituted imidazolium-based ionic liquids as electrolytes for lithium batteries. Journal of Power Sources, 2013, 235, 142-147.	7.8	58
100	From Phenyl Chlorides to α, <i>n</i> li>-Didehydrotoluenes via Phenyl Cations. A CPCM–CASMP2 Investigation. Journal of Organic Chemistry, 2013, 78, 3814-3820.	3.2	11
101	Transition-Metal-Free Arylations via Photogenerated Triplet 4-Alkyl- and 4-Trimethylsilylphenyl Cations. Journal of Organic Chemistry, 2013, 78, 6016-6024.	3.2	30
102	A Photochemical Route to Benzo[<i>a</i>]carbazoles <i>via</i> Domino Elimination/Electrocyclization of 2â€Arylâ€3â€(1â€tosylalkyl)indoles. Advanced Synthesis and Catalysis, 2013, 355, 643-646.	4.3	30
103	Smooth photogeneration of \hat{l}_{\pm} ,n-didehydrotoluenes (DHTs). Pure and Applied Chemistry, 2013, 85, 1479-1486.	1.9	5
104	Experiments with the titanium dioxide-ruthenium tris-bipyridine-nickel cyclam system for the photocatalytic reduction of CO2. Green Processing and Synthesis, 2013, 2, .	3.4	0
105	A Detailed Study of the (Electro)chemical Behavior of Bis(trifluoromethanesulfonyl)imide Based Ionic Liquids at Different Purification Steps. Electroanalysis, 2013, 25, 1453-1460.	2.9	4
106	Spectroscopic characterization of photoaccumulated radical anions: a litmus test to evaluate the efficiency of photoinduced electron transfer (PET) processes. Beilstein Journal of Organic Chemistry, 2013, 9, 800-808.	2.2	5
107	Visible Light Photocatalysis. A Green Choice?. Current Organic Chemistry, 2013, 17, 2366-2373.	1.6	40
108	Acetalization Allows the Photoheterolysis of the Ar–Cl Bond in Chlorobenzaldehydes and Chloroacetophenones. Journal of Organic Chemistry, 2012, 77, 9094-9101.	3.2	15

#	Article	IF	CITATIONS
109	Probing for a Leaving Group Effect on the Generation and Reactivity of Phenyl Cations. Journal of Organic Chemistry, 2012, 77, 3501-3507.	3.2	18
110	Activation of aliphatic C–H bonds by tetracyanobenzene photosensitization. A time-resolved and steady-state investigation. RSC Advances, 2012, 2, 1897.	3.6	15
111	Singlet/triplet phenyl cations and benzyne from the photodehalogenation of some silylated and stannylated phenyl halides. Chemical Science, 2012, 3, 1330.	7.4	31
112	A Photochemical Route to 2-Substituted Benzo[<i>b</i>]furans. Journal of Organic Chemistry, 2012, 77, 6473-6479.	3.2	40
113	α, <i>n</i> ê€Didehydrotoluenes by Photoactivation of (Chlorobenzyl)trimethylsilanes: An Alternative to Enyneâ€"Allenes Cyclization. Angewandte Chemie - International Edition, 2012, 51, 8577-8580.	13.8	24
114	Photochemistry in Ecosustainable Syntheses. , 2012, , 213-235.		0
115	Cationic and radical intermediates in the acid photorelease from aryl sulfonates and phosphates. Photochemical and Photobiological Sciences, 2011, 10, 123-127.	2.9	32
116	Photochemical technologies assessed: the case of rose oxide. Green Chemistry, 2011, 13, 1876.	9.0	69
117	Protic equilibria as the key factor of quercetin emission in solution. Relevance to biochemical and analytical studies. Physical Chemistry Chemical Physics, 2011, 13, 6858.	2.8	47
118	Lightâ€Driven Activation of the [H ₂)â€Mn ^{IV} (terpy)OH _{2Unit in a Chromophore–Catalyst Complex. Chemistry - an Asian Journal, 2011, 6, 1335-1339.}	> 3. 3	21
119	Looking for a Paradigm for the Reactivity of Phenonium Ions. European Journal of Organic Chemistry, 2011, 2011, 3229-3237.	2.4	20
120	Wavelength shifting systems based on flavonols and their metal complexes encapsulated by post-doping in porous SiO2 xerogel matrices. Journal of Molecular Structure, 2011, 993, 485-490.	3.6	17
121	Lithium ion conducting PVdF-HFP composite gel electrolytes based on N-methoxyethyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)-imide ionic liquid. Journal of Power Sources, 2010, 195, 559-566.	7.8	225
122	Participation of a heterolytic path in the photochemistry of chlorobenzene. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 210, 140-144.	3.9	13
123	The Contribution of Photochemistry to Green Chemistry. RSC Green Chemistry, 2009, , 80-111.	0.1	17
124	A binary ionic liquid system composed of N-methoxyethyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)-imide and lithium bis(trifluoromethanesulfonyl)imide: A new promising electrolyte for lithium batteries. Journal of Power Sources, 2009, 194, 45-50.	7.8	94
125	Photoinduced Three-Component Reaction: A Convenient Access to 3-Arylacetals or 3-Arylketals. Organic Letters, 2009, 11, 349-352.	4.6	30
126	Solar light-driven photocatalyzed alkylations. Chemistry on the window ledge. Chemical Communications, 2009, , 7351.	4.1	123

#	Article	IF	CITATIONS
127	The sunny side of chemistry: green synthesis by solar light. Photochemical and Photobiological Sciences, 2009, 8, 1499-1516.	2.9	138
128	Synthesis of \hat{l}^3 -lactols, \hat{l}^3 -lactones and 1,4-monoprotected succinaldehydes under moderately concentrated sunlight. Green Chemistry, 2009, 11, 1653.	9.0	59
129	Assessing photochemistry as a green synthetic method. Carbon–carbon bond forming reactions. Green Chemistry, 2009, 11, 239-249.	9.0	58
130	Revealing Phenylium, Phenonium, Vinylenephenonium, and Benzenium Ions in Solution. Chemistry - A European Journal, 2008, 14, 1029-1039.	3.3	45
131	Photochemical Arylation of Alkenols: Role of Intermediates and Synthetic Significance. European Journal of Organic Chemistry, 2008, 2008, 2240-2247.	2.4	23
132	Hydrogen bonding properties of DMSO in ground-state formation and optical spectra of 3-hydroxyflavone anion. Chemical Physics Letters, 2008, 467, 88-93.	2.6	47
133	Phosphate esters as "tunable―reagents in organic synthesis. Chemical Communications, 2008, , 3611.	4.1	53
134	An exploratory and mechanistic study of the defluorination of an (aminofluorophenyl)oxazolidinone: SN1(Ar*) vs. SR+N1(Ar*) mechanism. Organic and Biomolecular Chemistry, 2008, 6, 4634.	2.8	11
135	Photochemistry of metal complexes of 3-hydroxyflavone: towards a better understanding of the influence of solar light on the metal-soil organic matter interactions. Photochemical and Photobiological Sciences, 2008, 7, 109-119.	2.9	49
136	Photochemistry in synthesis: Where, when, and why. Pure and Applied Chemistry, 2007, 79, 1929-1938.	1.9	45
137	A Meta Effect in Organic Photochemistry? The Case of SN1 Reactions in Methoxyphenyl Derivatives. Journal of the American Chemical Society, 2007, 129, 5605-5611.	13.7	38
138	The \hat{I}^2 Effect of Silicon in Phenyl Cations. Journal of the American Chemical Society, 2007, 129, 15919-15926.	13.7	32
139	Derivatized humic acids modified gold electrode: Electrochemical characterization and analytical applications. Analytica Chimica Acta, 2007, 598, 58-64.	5.4	6
140	Multiwalled Carbon Nanotube Chemically Modified Gold Electrode for Inorganic As Speciation and Bi(III) Determination. Analytical Chemistry, 2006, 78, 4194-4199.	6.5	123
141	Benzyl (Phenyl) \hat{I}^3 - and \hat{I} -lactones via Photoinduced Tandem Arâ^'C, Câ^'O Bond Formation. Journal of the American Chemical Society, 2006, 128, 10670-10671.	13.7	65
142	Photo-Cross-Coupling Reaction of Electron-Rich Aryl Chlorides and Aryl Esters with Alkynes: A Metal-Free Alkynylation ChemInform, 2006, 37, no.	0.0	0
143	Metal-Free Cross-Coupling Reactions of Aryl Sulfonates and Phosphates through Photoheterolysis of Aryl-Oxygen Bonds. Angewandte Chemie - International Edition, 2005, 44, 1232-1236.	13.8	68
144	Photo-Cross-Coupling Reaction of Electron-Rich Aryl Chlorides and Aryl Esters with Alkynes: A Metal-Free Alkynylation. Angewandte Chemie - International Edition, 2005, 44, 5675-5678.	13.8	96

#	Article	IF	CITATION
145	Aryl Cation and Carbene Intermediates in the Photodehalogenation of Chlorophenols. Chemistry - A European Journal, 2005, 11, 140-151.	3.3	29
146	Expeditious synthesis of bioactive allylphenol constituents of the genus Piper through a metal-free photoallylation procedure. Organic and Biomolecular Chemistry, 2005, 3, 2868.	2.8	29
147	Aryl Cations from Aromatic Halides. Photogeneration and Reactivity of 4-Hydroxy(methoxy)phenyl Cation. Journal of Organic Chemistry, 2004, 69, 3465-3473.	3.2	68
148	Any colour you like. Excited state and ground state proton transfer in flavonols and applications. Photochemistry, 0, , 295-322.	0.2	13
149	Photogenerated aryl mesylate and aryl diethyl phosphate radical cations. A time-resolved spectroscopy investigation New Journal of Chemistry, 0, , .	2.8	1
150	Visibleâ€Lightâ€Driven Photocatalystâ€Free Preparation of (Z) βâ€Nitroacrylate Isomers. European Journal of Organic Chemistry, 0, , .	2.4	2