
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4939622/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Carbon–Carbon Bond Forming Reactions via Photogenerated Intermediates. Chemical Reviews, 2016, 116, 9850-9913.	47.7	867
2	Decatungstate Anion for Photocatalyzed "Window Ledge―Reactions. Accounts of Chemical Research, 2016, 49, 2232-2242.	15.6	244
3	Lithium ion conducting PVdF-HFP composite gel electrolytes based on N-methoxyethyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)-imide ionic liquid. Journal of Power Sources, 2010, 195, 559-566.	7.8	225
4	Photoinduced Multicomponent Reactions. Angewandte Chemie - International Edition, 2016, 55, 15476-15484.	13.8	174
5	Photogenerated acyl/alkoxycarbonyl/carbamoyl radicals for sustainable synthesis. Green Chemistry, 2019, 21, 748-764.	9.0	142
6	Photocatalytic CH Activation by Hydrogenâ€Atom Transfer in Synthesis. ChemCatChem, 2015, 7, 1516-1523.	3.7	140
7	The sunny side of chemistry: green synthesis by solar light. Photochemical and Photobiological Sciences, 2009, 8, 1499-1516.	2.9	138
8	Multiwalled Carbon Nanotube Chemically Modified Gold Electrode for Inorganic As Speciation and Bi(III) Determination. Analytical Chemistry, 2006, 78, 4194-4199.	6.5	123
9	Solar light-driven photocatalyzed alkylations. Chemistry on the window ledge. Chemical Communications, 2009, , 7351.	4.1	123
10	Photocatalytic generation of solar fuels from the reduction of H ₂ O and CO ₂ : a look at the patent literature. Physical Chemistry Chemical Physics, 2014, 16, 19790.	2.8	100
11	Photo-Cross-Coupling Reaction of Electron-Rich Aryl Chlorides and Aryl Esters with Alkynes: A Metal-Free Alkynylation. Angewandte Chemie - International Edition, 2005, 44, 5675-5678.	13.8	96
12	A binary ionic liquid system composed of N-methoxyethyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)-imide and lithium bis(trifluoromethanesulfonyl)imide: A new promising electrolyte for lithium batteries. Journal of Power Sources, 2009, 194, 45-50.	7.8	94
13	Wavelength Selective Generation of Aryl Radicals and Aryl Cations for Metal-Free Photoarylations. Journal of Organic Chemistry, 2016, 81, 9612-9619.	3.2	76
14	(Hetero)aromatics from dienynes, enediynes and enyne–allenes. Chemical Society Reviews, 2016, 45, 4364-4390.	38.1	70
15	Photochemical technologies assessed: the case of rose oxide. Green Chemistry, 2011, 13, 1876.	9.0	69
16	Aryl Cations from Aromatic Halides. Photogeneration and Reactivity of 4-Hydroxy(methoxy)phenyl Cation. Journal of Organic Chemistry, 2004, 69, 3465-3473.	3.2	68
17	Metal-Free Cross-Coupling Reactions of Aryl Sulfonates and Phosphates through Photoheterolysis of Aryl-Oxygen Bonds. Angewandte Chemie - International Edition, 2005, 44, 1232-1236.	13.8	68
18	Benzyl (Phenyl) γ- and δ-lactones via Photoinduced Tandem Arâ^'C, Câ^'O Bond Formation. Journal of the American Chemical Society, 2006, 128, 10670-10671.	13.7	65

#	Article	IF	CITATIONS
19	Decatungstate Photocatalyzed Acylations and Alkylations in Flow v <i>ia</i> Hydrogen Atom Transfer. Advanced Synthesis and Catalysis, 2015, 357, 3687-3695.	4.3	65
20	Synthesis of Î ³ -lactols, Î ³ -lactones and 1,4-monoprotected succinaldehydes under moderately concentrated sunlight. Green Chemistry, 2009, 11, 1653.	9.0	59
21	Assessing photochemistry as a green synthetic method. Carbon–carbon bond forming reactions. Green Chemistry, 2009, 11, 239-249.	9.0	58
22	Alkoxy substituted imidazolium-based ionic liquids as electrolytes for lithium batteries. Journal of Power Sources, 2013, 235, 142-147.	7.8	58
23	Wavelength dependence and wavelength selectivity in photochemical reactions. Photochemical and Photobiological Sciences, 2019, 18, 2094-2101.	2.9	56
24	Phosphate esters as "tunable―reagents in organic synthesis. Chemical Communications, 2008, , 3611.	4.1	53
25	Photocatalystâ€free, Visible Light Driven, Gold Promoted Suzuki Synthesis of (Hetero)biaryls. ChemCatChem, 2017, 9, 4456-4459.	3.7	51
26	Visible Light Promoted Metal- and Photocatalyst-Free Synthesis of Allylarenes. Journal of Organic Chemistry, 2017, 82, 10687-10692.	3.2	50
27	Photochemistry of metal complexes of 3-hydroxyflavone: towards a better understanding of the influence of solar light on the metal-soil organic matter interactions. Photochemical and Photobiological Sciences, 2008, 7, 109-119.	2.9	49
28	A Visibleâ€Lightâ€Driven, Metalâ€free Route to Aromatic Amides via Radical Arylation of Isonitriles. Advanced Synthesis and Catalysis, 2017, 359, 3826-3830.	4.3	49
29	Hydrogen bonding properties of DMSO in ground-state formation and optical spectra of 3-hydroxyflavone anion. Chemical Physics Letters, 2008, 467, 88-93.	2.6	47
30	Protic equilibria as the key factor of quercetin emission in solution. Relevance to biochemical and analytical studies. Physical Chemistry Chemical Physics, 2011, 13, 6858.	2.8	47
31	Photochemistry in synthesis: Where, when, and why. Pure and Applied Chemistry, 2007, 79, 1929-1938.	1.9	45
32	Revealing Phenylium, Phenonium, Vinylenephenonium, and Benzenium Ions in Solution. Chemistry - A European Journal, 2008, 14, 1029-1039.	3.3	45
33	Visible-Light-Driven Synthesis of Arylstannanes from Arylazo Sulfones. Organic Letters, 2019, 21, 5187-5191.	4.6	43
34	A Photochemical Route to 2-Substituted Benzo[<i>b</i>]furans. Journal of Organic Chemistry, 2012, 77, 6473-6479.	3.2	40
35	Visible Light Photocatalysis. A Green Choice?. Current Organic Chemistry, 2013, 17, 2366-2373.	1.6	40
36	Visible Light-Promoted Formation of C–B and C–S Bonds under Metal- and Photocatalyst-Free Conditions. Synthesis, 2019, 51, 1243-1252.	2.3	40

#	Article	IF	CITATIONS
37	Power-to-X: Lighting the Path to a Net-Zero-Emission Future. ACS Sustainable Chemistry and Engineering, 2021, 9, 7179-7181.	6.7	39
38	A Meta Effect in Organic Photochemistry? The Case of SN1 Reactions in Methoxyphenyl Derivatives. Journal of the American Chemical Society, 2007, 129, 5605-5611.	13.7	38
39	Photoinduzierte Mehrkomponentenreaktionen. Angewandte Chemie, 2016, 128, 15702-15711.	2.0	36
40	Solvent effects on the photophysics and photoreactivity of 3-hydroxyflavone: A combined spectroscopic and kinetic study. Journal of Molecular Liquids, 2015, 205, 110-114.	4.9	35
41	Flow Synthesis of Substituted Î³â€Łactones by Consecutive Photocatalytic/Reductive Reactions. Advanced Synthesis and Catalysis, 2014, 356, 753-758.	4.3	33
42	Sunlightâ€Driven Synthesis of Triarylethylenes (TAEs) via Metalâ€Free Mizoroki–Heckâ€Type Coupling. European Journal of Organic Chemistry, 2018, 2018, 5297-5303.	2.4	33
43	Dyedauxiliary Groups, an Emerging Approach in Organic Chemistry. The Case of Arylazo Sulfones. Journal of Organic Chemistry, 2020, 85, 12813-12822.	3.2	33
44	The β Effect of Silicon in Phenyl Cations. Journal of the American Chemical Society, 2007, 129, 15919-15926.	13.7	32
45	Cationic and radical intermediates in the acid photorelease from aryl sulfonates and phosphates. Photochemical and Photobiological Sciences, 2011, 10, 123-127.	2.9	32
46	Pyrrolidinium-based Ionic Liquids: Aquatic Ecotoxicity, Biodegradability, and Algal Subinhibitory Stimulation. ACS Sustainable Chemistry and Engineering, 2015, 3, 1860-1865.	6.7	32
47	Singlet/triplet phenyl cations and benzyne from the photodehalogenation of some silylated and stannylated phenyl halides. Chemical Science, 2012, 3, 1330.	7.4	31
48	Photoinduced Three-Component Reaction: A Convenient Access to 3-Arylacetals or 3-Arylketals. Organic Letters, 2009, 11, 349-352.	4.6	30
49	Transition-Metal-Free Arylations via Photogenerated Triplet 4-Alkyl- and 4-Trimethylsilylphenyl Cations. Journal of Organic Chemistry, 2013, 78, 6016-6024.	3.2	30
50	A Photochemical Route to Benzo[<i>a</i>]carbazoles <i>via</i> Domino Elimination/Electrocyclization of 2â€Arylâ€3â€{1â€ŧosylalkyl)indoles. Advanced Synthesis and Catalysis, 2013, 355, 643-646.	4.3	30
51	Visible Lightâ€Driven, Photocatalystâ€Free Arbuzovâ€Like Reaction via Arylazo Sulfones. Advanced Synthesis and Catalysis, 2019, 361, 5239-5244.	4.3	30
52	Metalâ€Free Synthesis of Unsymmetrical Aryl Selenides and Tellurides via Visible Lightâ€Đriven Activation of Arylazo Sulfones. European Journal of Organic Chemistry, 2020, 2020, 7358-7367.	2.4	30
53	Photoorganocatalysis in Organic Synthesis. Catalytic Science Series, 2019, , .	0.0	30
54	Aryl Cation and Carbene Intermediates in the Photodehalogenation of Chlorophenols. Chemistry - A European Journal, 2005, 11, 140-151.	3.3	29

#	Article	IF	CITATIONS
55	Expeditious synthesis of bioactive allylphenol constituents of the genus Piper through a metal-free photoallylation procedure. Organic and Biomolecular Chemistry, 2005, 3, 2868.	2.8	29
56	Role of solute-solvent hydrogen bonds on the ground state and the excited state proton transfer in 3-hydroxyflavone. A systematic spectrophotometry study. Photochemical and Photobiological Sciences, 2018, 17, 923-933.	2.9	29
57	Flow Photochemistry of Azosulfones: Application of "Sunflow―Reactors. ChemPhotoChem, 2018, 2, 878-883.	3.0	26
58	Photoredox-Catalyzed Generation of Acetonyl Radical in Flow: Theoretical Investigation and Synthetic Applications. ACS Catalysis, 2019, 9, 2493-2500.	11.2	25
59	α, <i>n</i> â€Didehydrotoluenes by Photoactivation of (Chlorobenzyl)trimethylsilanes: An Alternative to Enyne–Allenes Cyclization. Angewandte Chemie - International Edition, 2012, 51, 8577-8580.	13.8	24
60	Photochemical Arylation of Alkenols: Role of Intermediates and Synthetic Significance. European Journal of Organic Chemistry, 2008, 2008, 2240-2247.	2.4	23
61	Electrochemistry and analytical determination of lysergic acid diethylamide (LSD) via adsorptive stripping voltammetry. Talanta, 2014, 130, 456-461.	5.5	23
62	Photochemical synthesis: Using light to build C–C bonds under mild conditions. Comptes Rendus Chimie, 2017, 20, 261-271.	0.5	23
63	Phenyl cation: A versatile intermediate. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 339, 103-113.	3.9	23
64	Aryl tosylates as non-ionic photoacid generators (PAGs): photochemistry and applications in cationic photopolymerizations. RSC Advances, 2015, 5, 33239-33248.	3.6	22
65	A ï‰-mercaptoundecylphosphonic acid chemically modified gold electrode for uranium determination in waters in presence of organic matter. Talanta, 2016, 151, 119-125.	5.5	22
66	<i>N</i> -Aryltrifluoromethanesulfonimides as new trifluoromethylating agents for the (photo)catalyst-free functionalization of (hetero)aromatics. Chemical Communications, 2018, 54, 4144-4147.	4.1	22
67	Aryldiazenyl Radicals from Arylazo Sulfones: Visible Lightâ€Driven Diazenylation of Enol Silyl Ethers. Advanced Synthesis and Catalysis, 2020, 362, 2150-2154.	4.3	22
68	Lightâ€Driven Activation of the [H ₂ O(terpy)Mn ^{III} â€Î1⁄4â€(O ₂)â€Mn ^{IV} (terpy)OH _{2Unit in a Chromophore–Catalyst Complex. Chemistry - an Asian Journal, 2011, 6, 1335-1339.}	≻}. 3	21
69	Aryl Imidazylates and Aryl Sulfates As Electrophiles in Metal-Free ArS _N 1 Reactions. Journal of Organic Chemistry, 2014, 79, 11527-11533.	3.2	21
70	Reactive Oxygen Species (ROS)-vs Peroxyl-Mediated Photosensitized Oxidation of Triphenylphosphine: A Comparative Study. Journal of Organic Chemistry, 2016, 81, 11678-11685.	3.2	21
71	Designing radical chemistry by visible light-promoted homolysis. Trends in Chemistry, 2022, 4, 305-317.	8.5	21
72	Looking for a Paradigm for the Reactivity of Phenonium Ions. European Journal of Organic Chemistry, 2011, 2011, 3229-3237.	2.4	20

5

#	Article	IF	CITATIONS
73	Photochemistry of <i>N</i> â€Arylsulfonimides: An Easily Available Class of Nonionic Photoacid Generators (PAGs). Chemistry - A European Journal, 2016, 22, 16998-17005.	3.3	20
74	Targeting Photochemical Scalpels or Lancets in the Photodynamic Therapy Field—The Photochemist's Role. Photochemistry and Photobiology, 2017, 93, 1139-1153.	2.5	20
75	Polarizable QM/Classical Approaches for the Modeling of Solvation Effects on UV–Vis and Fluorescence Spectra: An Integrated Strategy. Journal of Physical Chemistry A, 2018, 122, 390-397.	2.5	20
76	Visible-Light-Driven Synthesis of 1,3,4-Trisubstituted Pyrroles from Aryl Azides. Organic Letters, 2019, 21, 7782-7786.	4.6	20
77	Hydro/Deutero Deamination of Arylazo Sulfones under Metal- and (Photo)Catalyst-Free Conditions. Molecules, 2019, 24, 2164.	3.8	20
78	Photocatalyzed syntheses of phenanthrenes and their aza-analogues. A review. Beilstein Journal of Organic Chemistry, 2020, 16, 1476-1488.	2.2	19
79	Probing for a Leaving Group Effect on the Generation and Reactivity of Phenyl Cations. Journal of Organic Chemistry, 2012, 77, 3501-3507.	3.2	18
80	Toward a Green Atom Economy: Development of a Sustainable Multicomponent Reaction. Synthesis, 2015, 47, 2385-2390.	2.3	18
81	Flow Metalâ€Free Arï£;C Bond Formation <i>via</i> Photogenerated Phenyl Cations. Advanced Synthesis and Catalysis, 2016, 358, 1164-1172.	4.3	18
82	Metal-Free Trifluoromethylthiolation of Arylazo Sulfones. Journal of Organic Chemistry, 2021, 86, 1292-1299.	3.2	18
83	Photochemistry of Cannabidiol (CBD) Revised. A Combined Preparative and Spectrometric Investigation. Journal of Natural Products, 2021, 84, 2858-2865.	3.0	18
84	The Contribution of Photochemistry to Green Chemistry. RSC Green Chemistry, 2009, , 80-111.	0.1	17
85	Wavelength shifting systems based on flavonols and their metal complexes encapsulated by post-doping in porous SiO2 xerogel matrices. Journal of Molecular Structure, 2011, 993, 485-490.	3.6	17
86	Metal-free arylations via photochemical activation of the Ar–OSO2R bond in aryl nonaflates. Green Chemistry, 2013, 15, 2704.	9.0	17
87	Energy and Molecules from Photochemical/Photocatalytic Reactions. An Overview. Molecules, 2015, 20, 1527-1542.	3.8	17
88	Smooth Metalâ€Free Photoinduced Preparation of Valuable 8â€Arylxanthines. European Journal of Organic Chemistry, 2020, 2020, 1448-1452.	2.4	16
89	Acetalization Allows the Photoheterolysis of the Ar–Cl Bond in Chlorobenzaldehydes and Chloroacetophenones. Journal of Organic Chemistry, 2012, 77, 9094-9101.	3.2	15
90	Activation of aliphatic C–H bonds by tetracyanobenzene photosensitization. A time-resolved and steady-state investigation. RSC Advances, 2012, 2, 1897.	3.6	15

#	Article	IF	CITATIONS
91	Simultaneous Photografting of Two Organic Groups on a Gold Surface by using Arylazo Sulfones as Single Precursors. Langmuir, 2020, 36, 2786-2793.	3.5	14
92	Dyedauxiliary Group Strategy for the α-Functionalization of Ketones and Esters. ACS Organic & Inorganic Au, 2021, 1, 68-71.	4.0	14
93	Participation of a heterolytic path in the photochemistry of chlorobenzene. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 210, 140-144.	3.9	13
94	Any colour you like. Excited state and ground state proton transfer in flavonols and applications. Photochemistry, 0, , 295-322.	0.2	13
95	Photochemical Co-Oxidation of Sulfides and Phosphines with Tris(<i>p</i> -bromophenyl)amine. A Mechanistic Study. Journal of Organic Chemistry, 2018, 83, 8104-8113.	3.2	13
96	Preparation of (substituted) picenes via solar light-induced Mallory photocyclization. RSC Advances, 2015, 5, 27470-27475.	3.6	12
97	Conditions and Edges for the Photochemical Generation of Short-Lived Aryl Cations: A Computational Approach. Synlett, 2015, 26, 471-478.	1.8	12
98	Paradigms in Green Chemistry and Technology. Springer Briefs in Molecular Science, 2016, , .	0.1	12
99	An exploratory and mechanistic study of the defluorination of an (aminofluorophenyl)oxazolidinone: SN1(Ar*) vs. SR+N1(Ar*) mechanism. Organic and Biomolecular Chemistry, 2008, 6, 4634.	2.8	11
100	From Phenyl Chlorides to α, <i>n</i> -Didehydrotoluenes via Phenyl Cations. A CPCM–CASMP2 Investigation. Journal of Organic Chemistry, 2013, 78, 3814-3820.	3.2	11
101	(Co)oxidation/cyclization processes upon irradiation of triphenylamine. Tetrahedron Letters, 2014, 55, 2932-2935.	1.4	11
102	Methoxy-Substituted α, <i>n</i> -Didehydrotoluenes. Photochemical Generation and Polar vs Diradical Reactivity. Journal of the American Chemical Society, 2014, 136, 13874-13881.	13.7	11
103	Leaving Groups in Metalâ€Free Arylations: Make Your Choice!. European Journal of Organic Chemistry, 2020, 2020, 5292-5304.	2.4	11
104	Photogenerated α, <i>n</i> -Didehydrotoluenes from Chlorophenylacetic Acids at Physiological pH. Journal of Organic Chemistry, 2015, 80, 852-858.	3.2	10
105	Singlet vs Triplet Reactivity of Photogenerated α, <i>n</i> -Didehydrotoluenes. Journal of Organic Chemistry, 2017, 82, 6592-6603.	3.2	10
106	Solvent effects on the vibrational spectrum of 3-hydroxyflavone. Journal of Molecular Liquids, 2019, 275, 723-728.	4.9	10
107	Critical assessment of solvent effects on absorption and fluorescence of 3HF in acetonitrile in the QM/PCM framework: A synergic computational and experimental study. Journal of Molecular Structure, 2019, 1182, 283-291.	3.6	10
108	Visible Light-Driven, Gold(I)-Catalyzed Preparation of Symmetrical (Hetero)biaryls by Homocoupling of Arylazo Sulfones. Journal of Organic Chemistry, 2022, 87, 4863-4872.	3.2	10

#	Article	IF	CITATIONS
109	ω-Thio nitrilotriacetic chemically modified gold electrode for iron determination in natural waters with different salinity. Talanta, 2014, 130, 90-95.	5.5	9
110	Aryl Sulfonates as Initiators for Extreme Ultraviolet Lithography: Applications in Epoxyâ€Based Hybrid Materials. ChemPhotoChem, 2018, 2, 425-432.	3.0	9
111	Acid Catalyzed Formation of C-C and C-S Bonds via Excited State Proton Transfer. Molecules, 2019, 24, 1318.	3.8	9
112	Competing Pathways in the Photogeneration of Didehydrotoluenes from (Trimethylsilylmethyl)aryl Sulfonates and Phosphates. Chemistry - A European Journal, 2014, 20, 17572-17578.	3.3	8
113	Multi-Step Continuous Flow Synthesis of \hat{I}^2/\hat{I}^3 -Substituted Ketones. ChemPhotoChem, 2018, 2, 847-850.	3.0	8
114	Photochemistry of Tris(2,4â€dibromophenyl)amine and its Application to Coâ€oxidation on Sulfides and Phosphines ^{â€} . Photochemistry and Photobiology, 2021, 97, 1278-1288.	2.5	8
115	Blue light driven free-radical polymerization using arylazo sulfones as initiators. Polymer Chemistry, 2021, 12, 5747-5751.	3.9	8
116	Diastereoselective Isomerization of (E)â€Î²â€Nitroenones into βâ€Nitroâ€Î²,γâ€Unsaturated Ketones under Microwave Conditions. Advanced Synthesis and Catalysis, 2020, 362, 4680-4686.	4.3	7
117	Visibleâ€Lightâ€Driven Competitive Stereo―and Regioisomerization of (<i>E</i>)â€Î²â€Nitroenones. ChemPhotoChem, 2021, 5, 871-875.	3.0	7
118	Electrochemical characterization and voltammetric determination of aryl piperazine emerging as designer drugs. Journal of Electroanalytical Chemistry, 2021, 895, 115480.	3.8	7
119	Derivatized humic acids modified gold electrode: Electrochemical characterization and analytical applications. Analytica Chimica Acta, 2007, 598, 58-64.	5.4	6
120	Application of Visible and Solar Light in Organic Synthesis. Lecture Notes in Quantum Chemistry II, 2016, , 281-342.	0.3	6
121	<i>N</i> â€Arylsulfonimides as Photoinitiators for Cationic Polymerization of Epoxy Solâ€Gel Materials. ChemistrySelect, 2017, 2, 3633-3636.	1.5	6
122	Design Consideration of Continuous-Flow Photoreactors. , 2017, , 1-36.		6
123	Photochemistry of triphenylamine (TPA) in homogeneous solution and the role of transient <i>N</i> -phenyl-4 <i>a</i> ,4 <i>b</i> -dihydrocarbazole. A steady-state and time-resolved investigation. New Journal of Chemistry, 2021, 45, 16581-16593.	2.8	6
124	The Photoinduced Electrocyclization Reaction of Triphenylamine (TPA) in Sustainable and Confined Micellar Solutions: A Steady‣tate and Laser Flash Photolysis Approach. ChemPhotoChem, 2022, 6, .	3.0	6
125	Smooth photogeneration of $\hat{l}\pm$,n-didehydrotoluenes (DHTs). Pure and Applied Chemistry, 2013, 85, 1479-1486.	1.9	5
126	Spectroscopic characterization of photoaccumulated radical anions: a litmus test to evaluate the efficiency of photoinduced electron transfer (PET) processes. Beilstein Journal of Organic Chemistry, 2013, 9, 800-808.	2.2	5

#	Article	IF	CITATIONS
127	Electrochemical analysis and characterization of psychoactive substances glaucine and tetrahydropalmatine. Journal of Electroanalytical Chemistry, 2022, 907, 116032.	3.8	5
128	A Detailed Study of the (Electro)chemical Behavior of Bis(trifluoromethanesulfonyl)imide Based Ionic Liquids at Different Purification Steps. Electroanalysis, 2013, 25, 1453-1460.	2.9	4
129	On the Route to the Photogeneration of Heteroaryl Cations. The Case of Halothiophenes. Journal of Organic Chemistry, 2016, 81, 6336-6342.	3.2	4
130	Photohomolysis and Photoheterolysis in Aryl Sulfonates and Aryl Phosphates. Chemistry - A European Journal, 2021, 27, 6315-6323.	3.3	4
131	Sugar-Assisted Photogeneration of Didehydrotoluenes from Chlorobenzylphosphonic Acids. Journal of Organic Chemistry, 2017, 82, 12162-12172.	3.2	3
132	Fluorescent silica MCM-41 nanoparticles based on flavonoids: Direct post-doping encapsulation and spectral characterization. Dyes and Pigments, 2021, 185, 108870.	3.7	3
133	Aryl–Cl vs heteroatom–Si bond cleavage on the route to the photochemical generation of σ,Ĩ€-heterodiradicals. Photochemical and Photobiological Sciences, 2022, 21, 667-685.	2.9	3
134	Activation of Chemical Substrates in Green Chemistry. Springer Briefs in Molecular Science, 2016, , 25-61.	0.1	2
135	Light-driven electron transfer in a modular assembly of a ruthenium(II) polypyridine sensitiser and a manganese(II) terpyridine unit separated by a redox active linkage. DFT analysis. Comptes Rendus Chimie, 2017, 20, 323-332.	0.5	2
136	Metal-free synthesis of biarenes via photoextrusion in di(tri)aryl phosphates. Beilstein Journal of Organic Chemistry, 2020, 16, 3008-3014.	2.2	2
137	Proton-controlled Action of an Imidazole as Electron Relay in a Photoredox Triad. Photochemical and Photobiological Sciences, 2022, 21, 247-259.	2.9	2
138	Diradicals Photogeneration from Chloroaryl‧ubstituted Carboxylic Acids. Chemistry - A European Journal, 2022, 28, .	3.3	2
139	Visibleâ€Lightâ€Driven Photocatalystâ€Free Preparation of (Z) βâ€Nitroacrylate Isomers. European Journal of Organic Chemistry, 0, , .	2.4	2
140	Electron spectroscopies of 3-hydroxyflavone and 7-hydroxyflavone in MCM-41 silica nanoparticles and in acetonitrile solutions. Experimental data and DFT/TD-DFT calculations. Data in Brief, 2021, 34, 106630.	1.0	1
141	Photons at Play: Photocatalysis in Sustainable Chemistry. A Joint Virtual Special Issue by ACS Catalysis and ACS Sustainable Chemistry & Engineering. ACS Sustainable Chemistry and Engineering, 2021, 9, 13125-13127.	6.7	1
142	Photogenerated aryl mesylate and aryl diethyl phosphate radical cations. A time-resolved spectroscopy investigation New Journal of Chemistry, 0, , .	2.8	1
143	Photo-Cross-Coupling Reaction of Electron-Rich Aryl Chlorides and Aryl Esters with Alkynes: A Metal-Free Alkynylation ChemInform, 2006, 37, no.	0.0	0
144	Experiments with the titanium dioxide-ruthenium tris-bipyridine-nickel cyclam system for the photocatalytic reduction of CO2. Green Processing and Synthesis, 2013, 2, .	3.4	0

C		Deerr	
SILL	ANO I	Protti	

#	Article	IF	CITATIONS
145	<i>ACS Sustainable Chemistry & Engineering</i> Virtual Special Issue on Chemical Conversion of Biomass to Fine and Platform Chemicals. ACS Sustainable Chemistry and Engineering, 2019, 7, 13584-13585.	6.7	Ο
146	Photocatalytic Fluorination Reactions. , 2019, , 183-221.		0
147	2.6 Generation of Carbon-Centered Radicals by Photochemical Methods. , 2021, , .		0
148	Photochemistry in Ecosustainable Syntheses. , 2012, , 213-235.		0
149	Aromatics and Cyanoaromatics. Catalytic Science Series, 2019, , 71-111.	0.0	Ο
150	A special issue dedicated to Angelo Albini on the occasion of his 75th birthday. Photochemical and Photobiological Sciences, 2022, , 1.	2.9	0