
Marius Wernig

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4937699/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Treatment of a genetic brain disease by CNS-wide microglia replacement. Science Translational Medicine, 2022, 14, eabl9945.	5.8	45
2	Is hypoimmunogenic stem cell therapy safe in times of pandemics?. Stem Cell Reports, 2022, , .	2.3	5
3	Somatic Lineage Reprogramming. Cold Spring Harbor Perspectives in Biology, 2022, 14, a040808.	2.3	9
4	Collagen VI Regulates Motor Circuit Plasticity and Motor Performance by Cannabinoid Modulation. Journal of Neuroscience, 2022, 42, 1557-1573.	1.7	1
5	Myt1l haploinsufficiency leads to obesity and multifaceted behavioral alterations in mice. Molecular Autism, 2022, 13, 19.	2.6	10
6	Generation of functional human oligodendrocytes from dermal fibroblasts by direct lineage conversion. Development (Cambridge), 2022, 149, .	1.2	8
7	Transition to a mesenchymal state in neuroblastoma confers resistance to anti-GD2 antibody via reduced expression of ST8SIA1. Nature Cancer, 2022, 3, 976-993.	5.7	23
8	Optogenetic manipulation of cellular communication using engineered myosin motors. Nature Cell Biology, 2021, 23, 198-208.	4.6	26
9	Comparison of Acute Effects of Neurotoxic Compounds on Network Activity in Human and Rodent Neural Cultures. Toxicological Sciences, 2021, 180, 295-312.	1.4	12
10	H3.3-K27M drives neural stem cell-specific gliomagenesis in a human iPSC-derived model. Cancer Cell, 2021, 39, 407-422.e13.	7.7	56
11	Cell-type-specific profiling of human cellular models of fragile X syndrome reveal PI3K-dependent defects in translation and neurogenesis. Cell Reports, 2021, 35, 108991.	2.9	36
12	Cross-platform validation of neurotransmitter release impairments in schizophrenia patient-derived <i>NRXN1</i> -mutant neurons. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	49
13	Efficient generation of dopaminergic induced neuronal cells with midbrain characteristics. Stem Cell Reports, 2021, 16, 1763-1776.	2.3	21
14	RTN4/NoGo-receptor binding to BAI adhesion-GPCRs regulates neuronal development. Cell, 2021, 184, 5869-5885.e25.	13.5	45
15	Pro-neuronal activity of Myod1 due to promiscuous binding to neuronal genes. Nature Cell Biology, 2020, 22, 401-411.	4.6	38
16	Cdk1 Controls Global Epigenetic Landscape in Embryonic Stem Cells. Molecular Cell, 2020, 78, 459-476.e13.	4.5	76
17	Differential Signaling Mediated by ApoE2, ApoE3, and ApoE4 in Human Neurons Parallels Alzheimer's Disease Risk. Journal of Neuroscience, 2019, 39, 7408-7427.	1.7	85
18	Neuroligin-4 Regulates Excitatory Synaptic Transmission in Human Neurons. Neuron, 2019, 103, 617-626.e6.	3.8	75

#	Article	IF	CITATIONS
19	Global DNA methylation remodeling during direct reprogramming of fibroblasts to neurons. ELife, 2019, 8, .	2.8	64
20	Oligodendrocyte Death in Pelizaeus-Merzbacher Disease Is Rescued by Iron Chelation. Cell Stem Cell, 2019, 25, 531-541.e6.	5.2	60
21	TFAP2C- and p63-Dependent Networks Sequentially Rearrange Chromatin Landscapes to Drive Human Epidermal Lineage Commitment. Cell Stem Cell, 2019, 24, 271-284.e8.	5.2	76
22	Modeling Alzheimer's disease with human iPS cells: advancements, lessons, and applications. Neurobiology of Disease, 2019, 130, 104503.	2.1	24
23	Direct Reprogramming of Human Neurons Identifies MARCKSL1 as a Pathogenic Mediator of Valproic Acid-Induced Teratogenicity. Cell Stem Cell, 2019, 25, 103-119.e6.	5.2	43
24	Heterogeneity in old fibroblasts is linked to variability in reprogramming and wound healing. Nature, 2019, 574, 553-558.	13.7	187
25	Direct targeting of the mouse optic nerve for therapeutic delivery. Journal of Neuroscience Methods, 2019, 313, 1-5.	1.3	9
26	<i>In Vitro</i> Modeling of the Bipolar Disorder and Schizophrenia Using Patient-Derived Induced Pluripotent Stem Cells with Copy Number Variations of <i>PCDH1</i> 5 and <i>RELN</i> . ENeuro, 2019, 6, ENEURO.0403-18.2019.	0.9	54
27	The novel lncRNA lnc-NR2F1 is pro-neurogenic and mutated in human neurodevelopmental disorders. ELife, 2019, 8, .	2.8	59
28	New Approaches, New Opportunities at the 2019 ISSCR Annual Meeting. Stem Cell Reports, 2018, 11, 1305.	2.3	0
29	The fragile X mutation impairs homeostatic plasticity in human neurons by blocking synaptic retinoic acid signaling. Science Translational Medicine, 2018, 10, .	5.8	79
30	Transdifferentiation of human adult peripheral blood T cells into neurons. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6470-6475.	3.3	71
31	Profiling DNA–transcription factor interactions. Nature Biotechnology, 2018, 36, 501-502.	9.4	4
32	ApoE2, ApoE3, and ApoE4 Differentially Stimulate APP Transcription and AÎ ² Secretion. Cell, 2017, 168, 427-441.e21.	13.5	372
33	Human AML-iPSCs Reacquire Leukemic Properties after Differentiation and Model Clonal Variation of Disease. Cell Stem Cell, 2017, 20, 329-344.e7.	5.2	101
34	Induction of functional dopamine neurons from human astrocytes in vitro and mouse astrocytes in a Parkinson's disease model. Nature Biotechnology, 2017, 35, 444-452.	9.4	278
35	Generation of pure GABAergic neurons by transcription factor programming. Nature Methods, 2017, 14, 621-628.	9.0	265
36	The novel tool of cell reprogramming for applications in molecular medicine. Journal of Molecular Medicine, 2017, 95, 695-703.	1.7	19

#	Article	IF	CITATIONS
37	Unique versus Redundant Functions of Neuroligin Genes in Shaping Excitatory and Inhibitory Synapse Properties. Journal of Neuroscience, 2017, 37, 6816-6836.	1.7	89
38	Partial Reprogramming of Pluripotent Stem Cell-Derived Cardiomyocytes into Neurons. Scientific Reports, 2017, 7, 44840.	1.6	16
39	Myt1l safeguards neuronal identity by actively repressing many non-neuronal fates. Nature, 2017, 544, 245-249.	13.7	180
40	Rapid Chromatin Switch in the Direct Reprogramming of Fibroblasts to Neurons. Cell Reports, 2017, 20, 3236-3247.	2.9	121
41	μNeurocircuitry: Establishing <i>in vitro</i> models of neurocircuits with human neurons. Technology, 2017, 05, 87-97.	1.4	25
42	Concise Review: Stem Cell-Based Treatment of Pelizaeus-Merzbacher Disease. Stem Cells, 2017, 35, 311-315.	1.4	28
43	FoxO3 regulates neuronal reprogramming of cells from postnatal and aging mice. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8514-8519.	3.3	24
44	Conditional deletion of <i>L1CAM</i> in human neurons impairs both axonal and dendritic arborization and action potential generation. Journal of Experimental Medicine, 2016, 213, 499-515.	4.2	56
45	Generation and transplantation of reprogrammed human neurons in the brain using 3D microtopographic scaffolds. Nature Communications, 2016, 7, 10862.	5.8	109
46	Dissecting direct reprogramming from fibroblast to neuron using single-cell RNA-seq. Nature, 2016, 534, 391-395.	13.7	413
47	Autism-associated SHANK3 haploinsufficiency causes <i>I</i> _h channelopathy in human neurons. Science, 2016, 352, aaf2669.	6.0	270
48	Pluripotent Reprogramming of Human AML Resets Leukemic Behavior and Models Therapeutic Targeting of Subclones. Blood, 2016, 128, 575-575.	0.6	0
49	<i>In Vivo</i> Reprogramming for Brain and Spinal Cord Repair. ENeuro, 2015, 2, ENEURO.0106-15.2015.	0.9	38
50	The histone chaperone CAF-1 safeguards somatic cell identity. Nature, 2015, 528, 218-224.	13.7	244
51	Crosstalk between stem cell and cell cycle machineries. Current Opinion in Cell Biology, 2015, 37, 68-74.	2.6	34
52	A Continuous Molecular Roadmap to iPSC Reprogramming through Progression Analysis of Single-Cell Mass Cytometry. Cell Stem Cell, 2015, 16, 323-337.	5.2	187
53	Early reprogramming regulators identified by prospective isolation and mass cytometry. Nature, 2015, 521, 352-356.	13.7	101
54	Direct somatic lineage conversion. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140368.	1.8	26

#	Article	lF	CITATIONS
55	Failure to replicate the STAP cell phenomenon. Nature, 2015, 525, E6-E9.	13.7	41
56	Hallmarks of pluripotency. Nature, 2015, 525, 469-478.	13.7	338
57	Human Neuropsychiatric Disease Modeling using Conditional Deletion Reveals Synaptic Transmission Defects Caused by Heterozygous Mutations in NRXN1. Cell Stem Cell, 2015, 17, 316-328.	5.2	187
58	Inhibition of Pluripotency Networks by the Rb Tumor Suppressor Restricts Reprogramming and Tumorigenesis. Cell Stem Cell, 2015, 16, 39-50.	5.2	166
59	Analysis of conditional heterozygous STXBP1 mutations in human neurons. Journal of Clinical Investigation, 2015, 125, 3560-3571.	3.9	82
60	Human <i>COL7A1</i> -corrected induced pluripotent stem cells for the treatment of recessive dystrophic epidermolysis bullosa. Science Translational Medicine, 2014, 6, 264ra163.	5.8	194
61	Calcineurin Signaling Regulates Neural Induction through Antagonizing the BMP Pathway. Neuron, 2014, 82, 109-124.	3.8	38
62	Induced neuronal reprogramming. Journal of Comparative Neurology, 2014, 522, 2877-2886.	0.9	36
63	m6A RNA Modification Controls Cell Fate Transition in Mammalian Embryonic Stem Cells. Cell Stem Cell, 2014, 15, 707-719.	5.2	990
64	Generation of Induced Neuronal Cells by the Single Reprogramming Factor ASCL1. Stem Cell Reports, 2014, 3, 282-296.	2.3	312
65	Acute reduction in oxygen tension enhances the induction of neurons from human fibroblasts. Journal of Neuroscience Methods, 2013, 216, 104-109.	1.3	19
66	Hierarchical Mechanisms for Direct Reprogramming of Fibroblasts to Neurons. Cell, 2013, 155, 621-635.	13.5	531
67	Harnessing the Stem Cell Potential: A case for neural stem cell therapy. Nature Medicine, 2013, 19, 1580-1581.	15.2	10
68	An indirect approach to generating specific human cell types. Nature Methods, 2013, 10, 44-45.	9.0	8
69	FOXO3 Shares Common Targets with ASCL1 Genome-wide and Inhibits ASCL1-Dependent Neurogenesis. Cell Reports, 2013, 4, 477-491.	2.9	139
70	Generation of oligodendroglial cells by direct lineage conversion. Nature Biotechnology, 2013, 31, 434-439.	9.4	274
71	Rapid Single-Step Induction of Functional Neurons from Human Pluripotent Stem Cells. Neuron, 2013, 78, 785-798.	3.8	1,209
72	Neurons generated by direct conversion of fibroblasts reproduce synaptic phenotype caused by autism-associated neuroligin-3 mutation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16622-16627.	3.3	61

#	Article	IF	CITATIONS
73	Direct conversion of mouse fibroblasts to self-renewing, tripotent neural precursor cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2527-2532.	3.3	414
74	Molecular Roadblocks for Cellular Reprogramming. Molecular Cell, 2012, 47, 827-838.	4.5	171
75	The many roads to Rome: induction of neural precursor cells from fibroblasts. Current Opinion in Genetics and Development, 2012, 22, 517-522.	1.5	27
76	Telomere shortening and loss of self-renewal in dyskeratosis congenita induced pluripotent stem cells. Nature, 2011, 474, 399-402.	13.7	220
77	Direct lineage conversions: unnatural but useful?. Nature Biotechnology, 2011, 29, 892-907.	9.4	240
78	Direct Lineage Conversion of Terminally Differentiated Hepatocytes to Functional Neurons. Cell Stem Cell, 2011, 9, 374-382.	5.2	326
79	Induced Neuronal Cells: How to Make and Define a Neuron. Cell Stem Cell, 2011, 9, 517-525.	5.2	160
80	Induction of human neuronal cells by defined transcription factors. Nature, 2011, 476, 220-223.	13.7	1,152
81	In Situ Genetic Correction of the Sickle Cell Anemia Mutation in Human Induced Pluripotent Stem Cells Using Engineered Zinc Finger Nucleases. Stem Cells, 2011, 29, 1717-1726.	1.4	289
82	Cellular Reprogramming: Recent Advances in Modeling Neurological Diseases. Journal of Neuroscience, 2011, 31, 16070-16075.	1.7	25
83	Generation of iPSCs from cultured human malignant cells. Blood, 2010, 115, 4039-4042.	0.6	206
84	Direct conversion of fibroblasts to functional neurons by defined factors. Nature, 2010, 463, 1035-1041.	13.7	2,739
85	Comparison of contractile behavior of native murine ventricular tissue and cardiomyocytes derived from embryonic or induced pluripotent stem cells. FASEB Journal, 2010, 24, 2739-2751.	0.2	88
86	An imprinted signature helps isolate ESC-equivalent iPSCs. Cell Research, 2010, 20, 974-976.	5.7	3
87	On the Streets of San Francisco: Highlights from the ISSCR Annual Meeting 2010. Cell Stem Cell, 2010, 7, 443-450.	5.2	1
88	Cardiac Myocytes Derived from Murine Reprogrammed Fibroblasts: Intact Hormonal Regulation, Cardiac Ion Channel Expression and Development of Contractility. Cellular Physiology and Biochemistry, 2009, 24, 73-86.	1.1	88
89	Functional characterization of cardiomyocytes derived from murine induced pluripotent stem cells <i>in vitro</i> . FASEB Journal, 2009, 23, 4168-4180.	0.2	119
90	Dissecting direct reprogramming through integrative genomic analysis. Nature, 2008, 454, 49-55.	13.7	1,344

#	Article	IF	CITATIONS
91	Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature, 2008, 454, 766-770.	13.7	2,267
92	A drug-inducible transgenic system for direct reprogramming of multiple somatic cell types. Nature Biotechnology, 2008, 26, 916-924.	9.4	395
93	c-Myc Is Dispensable for Direct Reprogramming of Mouse Fibroblasts. Cell Stem Cell, 2008, 2, 10-12.	5.2	561
94	Sequential Expression of Pluripotency Markers during Direct Reprogramming of Mouse Somatic Cells. Cell Stem Cell, 2008, 2, 151-159.	5.2	756
95	Direct Reprogramming of Terminally Differentiated Mature B Lymphocytes to Pluripotency. Cell, 2008, 133, 250-264.	13.5	765
96	Connecting microRNA Genes to the Core Transcriptional Regulatory Circuitry of Embryonic Stem Cells. Cell, 2008, 134, 521-533.	13.5	1,332
97	Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5856-5861.	3.3	1,129
98	Treatment of Sickle Cell Anemia Mouse Model with iPS Cells Generated from Autologous Skin. Science, 2007, 318, 1920-1923.	6.0	1,399
99	Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nature Biotechnology, 2007, 25, 1177-1181.	9.4	723
100	In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature, 2007, 448, 318-324.	13.7	2,517
101	Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature, 2007, 448, 553-560.	13.7	3,733
102	A Bivalent Chromatin Structure Marks Key Developmental Genes in Embryonic Stem Cells. Cell, 2006, 125, 315-326.	13.5	4,773
103	Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature, 2006, 441, 349-353.	13.7	2,273
104	The vast majority of bone-marrow-derived cells integrated into mdx muscle fibers are silent despite long-term engraftment. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 11852-11857.	3.3	41
105	Functional Integration of Embryonic Stem Cell-Derived Neurons In Vivo. Journal of Neuroscience, 2004, 24, 5258-5268.	1.7	176
106	Migration and Differentiation of Myogenic Precursors Following Transplantation into the Developing Rat Brain. Stem Cells, 2003, 21, 181-189.	1.4	13
107	Functional Integration of Embryonic Stem Cell-Derived Neurons in Hippocampal Slice Cultures. Journal of Neuroscience, 2003, 23, 7075-7083.	1.7	100
108	Fifty Ways to Make a Neuron: Shifts in Stem Cell Hierarchy and Their Implications for Neuropathology and CNS Repair. Journal of Neuropathology and Experimental Neurology, 2002, 61, 101-110.	0.9	20

#	Article	IF	CITATIONS
109	Tau EGFP embryonic stem cells: An efficient tool for neuronal lineage selection and transplantation. Journal of Neuroscience Research, 2002, 69, 918-924.	1.3	77
110	In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nature Biotechnology, 2001, 19, 1129-1133.	9.4	1,780