Kevin S Mccann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/493686/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The diversity–stability debate. Nature, 2000, 405, 228-233.	27.8	2,471
2	Weak trophic interactions and the balance of nature. Nature, 1998, 395, 794-798.	27.8	1,338
3	Structural asymmetry and the stability of diverse food webs. Nature, 2006, 442, 265-269.	27.8	759
4	Integrating food web diversity, structure and stability. Trends in Ecology and Evolution, 2012, 27, 40-46.	8.7	344
5	Re–evaluating the omnivory–stability relationship in food webs. Proceedings of the Royal Society B: Biological Sciences, 1997, 264, 1249-1254.	2.6	328
6	Food Web Stability: The Influence of Trophic Flows across Habitats. American Naturalist, 1998, 152, 460-469.	2.1	325
7	A bioenergetic framework for the temperature dependence of trophic interactions. Ecology Letters, 2014, 17, 902-914.	6.4	268
8	TOP-DOWN IS BOTTOM-UP: DOES PREDATION IN THE RHIZOSPHERE REGULATE ABOVEGROUND DYNAMICS?. Ecology, 2003, 84, 846-857.	3.2	236
9	The predator-prey power law: Biomass scaling across terrestrial and aquatic biomes. Science, 2015, 349, aac6284.	12.6	235
10	Food web rewiring in a changing world. Nature Ecology and Evolution, 2019, 3, 345-354.	7.8	200
11	A landscape theory for food web architecture. Ecology Letters, 2008, 11, 867-881.	6.4	191
12	Fluctuations in density of an outbreak species drive diversity cascades in food webs. Proceedings of the United States of America, 2007, 104, 16976-16981.	7.1	182
13	Protecting biostructure. Nature, 2007, 446, 29-29.	27.8	173
14	Food Web Structure in Temporally-Forced Ecosystems. Trends in Ecology and Evolution, 2015, 30, 662-672.	8.7	171
15	Sampling bias is a challenge for quantifying specialization and network structure: lessons from a quantitative niche model. Oikos, 2016, 125, 502-513.	2.7	157
16	Biological Conditions for Chaos in a Three-Species Food Chain. Ecology, 1994, 75, 561-564.	3.2	144
17	Effects of partitioning allochthonous and autochthonous resources on food web stability. Ecological Research, 2002, 17, 419-432.	1.5	117
18	The more food webs change, the more they stay the same. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 1789-1801.	4.0	117

KEVIN S MCCANN

#	Article	IF	CITATIONS
19	Nonlinear Dynamics and Population Disappearances. American Naturalist, 1994, 144, 873-879.	2.1	110
20	When too much isn't enough: Does current food production meet global nutritional needs?. PLoS ONE, 2018, 13, e0205683.	2.5	110
21	On the prevalence and dynamics of inverted trophic pyramids and otherwise topâ€heavy communities. Ecology Letters, 2018, 21, 439-454.	6.4	92
22	Food web expansion and contraction in response to changing environmental conditions. Nature Communications, 2012, 3, 1105.	12.8	87
23	Barcoding a Quantified Food Web: Crypsis, Concepts, Ecology and Hypotheses. PLoS ONE, 2011, 6, e14424.	2.5	85
24	Lake morphometry predicts the degree of habitat coupling by a mobile predator. Oikos, 2009, 118, 1230-1238.	2.7	84
25	The adaptive capacity of lake food webs: from individuals to ecosystems. Ecological Monographs, 2016, 86, 4-19.	5.4	84
26	Evidence of indiscriminate fishing effects in one of the world's largest inland fisheries. Scientific Reports, 2018, 8, 8947.	3.3	84
27	Effects of differential habitat warming on complex communities. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8077-8082.	7.1	81
28	Effects of Multi-chain Omnivory on the Strength of Trophic Control in Lakes. Ecosystems, 2005, 8, 682-693.	3.4	76
29	Trophic cascades and trophic trickles in pelagic food webs. Proceedings of the Royal Society B: Biological Sciences, 1998, 265, 205-209.	2.6	69
30	Consistent role of weak and strong interactions in high- and low-diversity trophic food webs. Nature Communications, 2016, 7, 11180.	12.8	69
31	Winter in water: differential responses and the maintenance of biodiversity. Ecology Letters, 2020, 23, 922-938.	6.4	64
32	Food webs and the sustainability of indiscriminate fisheries. Canadian Journal of Fisheries and Aquatic Sciences, 2016, 73, 656-665.	1.4	55
33	Reconciling the Omnivory-Stability Debate. American Naturalist, 2012, 179, 22-37.	2.1	54
34	Seasonal increases in fish trophic niche plasticity within a floodâ€pulse river ecosystem (Tonle Sap Lake,) Tj ETQ	q0 0 0 rgB	T /Overlock 1

35	Simple rules for the coexistence and competitive dominance of plants mediated by mycorrhizal fungi. Ecology Letters, 2005, 8, 247-252.	6.4	48
36	Unexpected spatial patterns in an insect outbreak match a predator diffusion model. Proceedings of the Royal Society B: Biological Sciences, 1997, 264, 1837-1840.	2.6	46

KEVIN S MCCANN

#	Article	IF	CITATIONS
37	Predator Diet and Trophic Position Modified with Altered Habitat Morphology. PLoS ONE, 2016, 11, e0147759.	2.5	42
38	Consumer trophic positions respond variably to seasonally fluctuating environments. Ecology, 2019, 100, e02570.	3.2	41
39	Exploring stable pattern formation in models of tussock moth populations. Journal of Animal Ecology, 1999, 68, 94-107.	2.8	40
40	A mechanistic theory for aquatic food chain length. Nature Communications, 2017, 8, 2028.	12.8	39
41	FORUM: Sustaining ecosystem functions in a changing world: a call for an integrated approach. Journal of Applied Ecology, 2013, 50, 1124-1130.	4.0	37
42	Revising ecological assumptions about Human papillomavirus interactions and type replacement. Journal of Theoretical Biology, 2014, 350, 98-109.	1.7	37
43	Foodâ€web structure and ecosystem function in the Laurentian Great Lakes—Toward a conceptual model. Freshwater Biology, 2019, 64, 1-23.	2.4	37
44	An experimental test of a fundamental food web motif. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 1743-1749.	2.6	35
45	Ecological network complexity scales with area. Nature Ecology and Evolution, 2022, 6, 307-314.	7.8	35
46	DENSITY-DEPENDENT COEXISTENCE IN FISH COMMUNITIES. Ecology, 1998, 79, 2957-2967.	3.2	31
47	A role for brain size and cognition in food webs. Ecology Letters, 2016, 19, 948-955.	6.4	31
48	Landscape modification and nutrientâ€driven instability at a distance. Ecology Letters, 2021, 24, 398-414.	6.4	30
49	Optimal conservation planning for migratory animals: integrating demographic information across seasons. Conservation Letters, 2010, 3, 192-202.	5.7	29
50	<scp>HSS</scp> revisited: multi channel processes mediate trophic control across a productivity gradient. Ecology Letters, 2015, 18, 1190-1197.	6.4	28
51	Interaction strength revisited—clarifying the role of energy flux for food web stability. Theoretical Ecology, 2016, 9, 59-71.	1.0	28
52	Epilimnetic rotifer community responses to Bythotrephes longimanus invasion in Canadian Shield lakes. Limnology and Oceanography, 2006, 51, 1004-1012.	3.1	26
53	Losing Legacies, Ecological Release, and Transient Responses: Key Challenges for the Future of Northern Ecosystem Science. Ecosystems, 2017, 20, 23-30.	3.4	25
54	Blinded by the light? Nearshore energy pathway coupling and relative predator biomass increase with reduced water transparency across lakes. Oecologia, 2018, 186, 1031-1041.	2.0	22

KEVIN S MCCANN

#	Article	IF	CITATIONS
55	Resolution of Respect. Bulletin of the Ecological Society of America, 2005, 86, 203-205.	0.2	18
56	Indirect food web effects of Bythotrephes invasion: responses by the rotifer Conochilus in Harp Lake, Canada. Biological Invasions, 2007, 9, 233-243.	2.4	17
57	Supply and demand drive a critical transition to dysfunctional fisheries. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12333-12337.	7.1	17
58	Nutrient identity modifies the destabilising effects of eutrophication in grasslands. Ecology Letters, 2022, 25, 754-765.	6.4	17
59	Weak Interactions and Instability Cascades. Scientific Reports, 2015, 5, 12652.	3.3	16
60	The duality of stability: towards a stochastic theory of species interactions. Theoretical Ecology, 2016, 9, 477-485.	1.0	16
61	Predicting and Assessing Progress in the Restoration of Ecosystems. Conservation Letters, 2018, 11, e12390.	5.7	16
62	Homogenization of freshwater lakes: Recent compositional shifts in fish communities are explained by gamefish movement and not climate change. Global Change Biology, 2019, 25, 4222-4233.	9.5	16
63	The dynamical implications of human behaviour on a social-ecological harvesting model. Theoretical Ecology, 2017, 10, 341-354.	1.0	15
64	Context-dependent interactions and the regulation of species richness in freshwater fish. Nature Communications, 2018, 9, 973.	12.8	14
65	Geography and Morphology Affect the Ice Duration Dynamics of Northern Hemisphere Lakes Worldwide. Geophysical Research Letters, 2020, 47, e2020GL087953.	4.0	14
66	The long-term and transient implications of multiple predators in biocontrol. Theoretical Ecology, 2008, 1, 45-53.	1.0	13
67	Interaction strength and stability in stageâ€structured food web modules. Oikos, 2018, 127, 1494-1505.	2.7	13
68	Linking humans to food webs: a framework for the classification of global fisheries. Frontiers in Ecology and the Environment, 2018, 16, 412-420.	4.0	12
69	Potential oscillators and keystone modules in food webs. Ecology Letters, 2018, 21, 1330-1340.	6.4	11
70	Temperature triggers a nonâ€linear response in resource–consumer interaction strength. Ecosphere, 2019, 10, e02787.	2.2	10
71	Letter: Trophic interactions regulate peatland carbon cycling. Ecology Letters, 2021, 24, 781-790.	6.4	10
72	Introduction to the special issue: theory of food webs. Theoretical Ecology, 2016, 9, 1-2.	1.0	8

#	Article	IF	CITATIONS
73	Migration supports uneven consumer control in a sewage-enriched river food web. Journal of Animal Ecology, 2004, 73, 737-746.	2.8	7

Fish assemblage composition within the floodplain habitat mosaic of a tropical lake (Tonle Sap,) Tj ETQq0 0 0 rgBT $\frac{10}{2.4}$ or $\frac{10}{7}$ Tf 50 70

75	<i>Daphnia</i> inhibits the emergence of spatial pattern in a simple consumer–resource system. Ecology, 2017, 98, 1163-1170.	3.2	6
76	Riparian buffers maintain aquatic trophic structure in agricultural landscapes. Biology Letters, 2022, 18, 20210598.	2.3	6
77	Fisheries restoration potential: Optimizing fisheries profits while maintaining food web structure. Food Webs, 2020, 25, e00168.	1.2	5
78	Biomass Reallocation between Juveniles and Adults Mediates Food Web Stability by Distributing Energy Away from Strong Interactions. PLoS ONE, 2017, 12, e0170725.	2.5	5
79	A Mathematical Technique for Estimating Blastodisc:Yolk Volume Ratios instead of Egg Sizes. Environmental Biology of Fishes, 1999, 54, 229-234.	1.0	4
80	Monitoring and modelling total phosphorus contributions to a freshwater lake with cage-aquaculture. Aquaculture Research, 2017, 48, 283-297.	1.8	4
81	On the Dynamic Nature of Omnivory in a Changing World. BioScience, 2022, 72, 416-430.	4.9	4
82	Cascading effects of predators on algal size structure. Journal of Phycology, 2022, 58, 308-317.	2.3	4
83	Spatial Fingerprinting: Horizontal Fusion of Multi-Dimensional Bio-Tracers as Solution to Global Food Provenance Problems. Foods, 2021, 10, 717.	4.3	3

Parasitoid community responds indiscriminately to fluctuating spruce budworm (Lepidoptera:) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 30

85	Relative heart size and fish foraging ecology in a lake food web. Canadian Journal of Fisheries and Aquatic Sciences, 2018, 75, 1477-1484.	1.4	1
86	Strong nutrient-plant interactions enhance the stability of ecosystems. Communications Biology, 2021, 4, 1202.	4.4	0
87	Replicating nature's fabric: High information markets and the sustainability of global seafood. Food Webs, 2022, , e00239.	1.2	0
88	Phylogenetic community structure and stable isotope analysis of the parasitoid community associated with Eastern spruce budworm, <i>Choristoneura fumiferana</i> (Lepidoptera: Tortricidae). Agricultural and Forest Entomology, 2022, 24, 476-486.	1.3	0