
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/493673/publications.pdf Version: 2024-02-01

LESUE L REDC

#	Article	IF	CITATIONS
1	Optimized Detection of Acute MHV68 Infection With a Reporter System Identifies Large Peritoneal Macrophages as a Dominant Target of Primary Infection. Frontiers in Microbiology, 2021, 12, 656979.	3.5	8
2	Hierarchy of signaling thresholds downstream of the T cell receptor and the Tec kinase ITK. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	19
3	Interplay between IL-10, IFN-γ, IL-17A and PD-1 Expressing EBNA1-Specific CD4+ and CD8+ T Cell Responses in the Etiologic Pathway to Endemic Burkitt Lymphoma. Cancers, 2021, 13, 5375.	3.7	3
4	Activation of the Tec Kinase ITK Controls Graded IRF4 Expression in Response to Variations in TCR Signal Strength. Journal of Immunology, 2020, 205, 335-345.	0.8	23
5	CD8+ T Cells Require ITK-Mediated TCR Signaling for Migration to the Intestine. ImmunoHorizons, 2020, 4, 57-71.	1.8	15
6	TCR signaling: it's all about the numbers. Nature Immunology, 2019, 20, 1415-1416.	14.5	3
7	The Tec kinase ITK is essential for ILC2 survival and epithelial integrity in the intestine. Nature Communications, 2019, 10, 784.	12.8	19
8	Multidomain Control Over TEC Kinase Activation State Tunes the T Cell Response. Annual Review of Immunology, 2018, 36, 549-578.	21.8	25
9	Peptide Antigen Concentration Modulates Digital NFAT1 Activation in Primary Mouse Naive CD8+ T Cells as Measured by Flow Cytometry of Isolated Cell Nuclei. ImmunoHorizons, 2018, 2, 208-215.	1.8	18
10	The Transcription Factor Runx2 Is Required for Long-Term Persistence of Antiviral CD8+ Memory T Cells. ImmunoHorizons, 2018, 2, 251-261.	1.8	23
11	Gene-enhancer variants reveal diverse TCR-mediated differentiation. Nature Immunology, 2017, 18, 483-484.	14.5	1
12	NKG2C/E Marks the Unique Cytotoxic CD4 T Cell Subset, ThCTL, Generated by Influenza Infection. Journal of Immunology, 2017, 198, 1142-1155.	0.8	53
13	Transient expression of ZBTB32 in anti-viral CD8+ T cells limits the magnitude of the effector response and the generation of memory. PLoS Pathogens, 2017, 13, e1006544.	4.7	19
14	High pathogen burden in childhood promotes the development of unconventional innate-like CD8+ T cells. JCI Insight, 2017, 2, .	5.0	18
15	T Cells and Gene Regulation: The Switching On and Turning Up of Genes after T Cell Receptor Stimulation in CD8 T Cells. Frontiers in Immunology, 2016, 7, 76.	4.8	63
16	Type 1 interferon licenses naÃ⁻ve CD8 T cells to mediate anti-viral cytotoxicity. Virology, 2016, 493, 52-59.	2.4	22
17	IRF4 Regulates the Ratio of T-Bet to Eomesodermin in CD8+ T Cells Responding to Persistent LCMV Infection. PLoS ONE, 2015, 10, e0144826.	2.5	16
18	Suppression of systemic autoimmunity by the innate immune adaptor STINC. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E710-7.	7.1	139

#	Article	IF	CITATIONS
19	94 A Covalent Inhibitor of ITK and RLK Inhibits Th1 and Th17 Cell Differentiation and Prevents Disease Manifestation in an Adoptive Transfer Model of Colitis. Gastroenterology, 2015, 148, S-27.	1.3	0
20	A Small Molecule Inhibitor of ITK and RLK Impairs Th1 Differentiation and Prevents Colitis Disease Progression. Journal of Immunology, 2015, 195, 4822-4831.	0.8	28
21	TCF1 Is Required for the T Follicular Helper Cell Response to Viral Infection. Cell Reports, 2015, 12, 2099-2110.	6.4	134
22	Graded Levels of IRF4 Regulate CD8+ T Cell Differentiation and Expansion, but Not Attrition, in Response to Acute Virus Infection. Journal of Immunology, 2014, 192, 5881-5893.	0.8	99
23	Jarid2 is induced by TCR signalling and controls iNKT cell maturation. Nature Communications, 2014, 5, 4540.	12.8	39
24	Innate PLZF+CD4+ αβ T Cells Develop and Expand in the Absence of Itk. Journal of Immunology, 2014, 193, 673-687.	0.8	24
25	Development of Innate CD4+ and CD8+ T Cells in Itk-Deficient Mice Is Regulated by Distinct Pathways. Journal of Immunology, 2014, 193, 688-699.	0.8	22
26	Regulation of Tissue-Dependent Differences in CD8 ⁺ T Cell Apoptosis during Viral Infection. Journal of Virology, 2014, 88, 9490-9503.	3.4	3
27	Epigenetic Modifications Induced by Blimp-1 Regulate CD8+ T Cell Memory Progression during Acute Virus Infection. Immunity, 2013, 39, 661-675.	14.3	106
28	CD28 and ITK signals regulate autoreactive T cell trafficking. Nature Medicine, 2013, 19, 1632-1637.	30.7	37
29	A Network of High-Mobility Group Box Transcription Factors Programs Innate Interleukin-17 Production. Immunity, 2013, 38, 681-693.	14.3	153
30	Activation Loop Dynamics Determine the Different Catalytic Efficiencies of B Cell– and T Cell–Specific Tec Kinases. Science Signaling, 2013, 6, ra76.	3.6	27
31	The Tec Kinase ITK Regulates Thymic Expansion, Emigration, and Maturation of Î ³ δ NKT Cells. Journal of Immunology, 2013, 190, 2659-2669.	0.8	24
32	TCR signaling via Tec kinase ITK and interferon regulatory factor 4 (IRF4) regulates CD8 ⁺ T-cell differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2794-802.	7.1	90
33	Signaling Pathways That Regulate T Cell Development and Differentiation. Journal of Immunology, 2012, 189, 5487-5488.	0.8	6
34	Intrathymic programming of effector fates in three molecularly distinct γδT cell subtypes. Nature Immunology, 2012, 13, 511-518.	14.5	185
35	Asymmetric Proteasome Segregation as a Mechanism for Unequal Partitioning of the Transcription Factor T-bet during T Lymphocyte Division. Immunity, 2011, 34, 492-504.	14.3	166
36	IFN-αβ and Self-MHC Divert CD8 T Cells into a Distinct Differentiation Pathway Characterized by Rapid Acquisition of Effector Functions. Journal of Immunology, 2010, 185, 1419-1428.	0.8	50

#	Article	IF	CITATIONS
37	Disrupting the Intermolecular Self-Association of Itk Enhances T Cell Signaling. Journal of Immunology, 2010, 184, 4228-4235.	0.8	13
38	T-Cell Signaling Regulated by the Tec Family Kinase, Itk. Cold Spring Harbor Perspectives in Biology, 2010, 2, a002287-a002287.	5.5	200
39	Cell Cycle Progression following Naive T Cell Activation Is Independent of Jak3/Common γ-Chain Cytokine Signals. Journal of Immunology, 2009, 183, 4493-4501.	0.8	23
40	Tec kinase Itk in Î ³ ÎT cells is pivotal for controlling IgE production in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8308-8313.	7.1	112
41	Characterization of a novel interaction between transcription factor TFIIâ€I and the inducible tyrosine kinase in T cells. European Journal of Immunology, 2009, 39, 2584-2595.	2.9	24
42	Strength of T Cell Receptor Signaling Strikes Again. Immunity, 2009, 31, 529-531.	14.3	14
43	The Tec kinases Itk and Rlk regulate conventional versus innate Tâ€cell development. Immunological Reviews, 2009, 228, 115-131.	6.0	76
44	Janus-Kinase-3-Dependent Signals Induce Chromatin Remodeling at the Ifng Locus during T Helper 1 Cell Differentiation. Immunity, 2008, 28, 763-773.	14.3	108
45	The "Bubble Boy―Paradox: An Answer That Led to a Question. Journal of Immunology, 2008, 181, 5815-5816.	0.8	5
46	c-Abl, an additional tyrosine kinase required for T cell development and function. Cell Cycle, 2008, 7, 3791-3791.	2.6	2
47	The Tec Kinases Itk and Rlk Regulate NKT Cell Maturation, Cytokine Production, and Survival. Journal of Immunology, 2008, 180, 3007-3018.	0.8	114
48	The role of tec kinases in CD8+ T cell memory differentiation. FASEB Journal, 2008, 22, 511-511.	0.5	0
49	Tec Kinases in T Cell and Mast Cell Signaling. Advances in Immunology, 2007, 93, 145-184.	2.2	67
50	Subtle Defects in Pre-TCR Signaling in the Absence of the Tec Kinase Itk. Journal of Immunology, 2007, 179, 7561-7567.	0.8	22
51	Signalling through TEC kinases regulates conventional versus innate CD8+ T-cell development. Nature Reviews Immunology, 2007, 7, 479-485.	22.7	126
52	The Tec Family Tyrosine Kinases Itk and Rlk Regulate the Development of Conventional CD8+ T Cells. Immunity, 2006, 25, 79-91.	14.3	187
53	Itk and Th2 responses: action but no reaction. Trends in Immunology, 2006, 27, 453-460.	6.8	32
54	Tec Kinases Itk and Rlk Are Required for CD8+T Cell Responses to Virus Infection Independent of Their Role in CD4+T Cell Help. Journal of Immunology, 2006, 176, 1571-1581.	0.8	68

#	Article	IF	CITATIONS
55	Cutting Edge: An Alternative Pathway of CD4+ T Cell Differentiation Is Induced Following Activation in the Absence of γ-Chain-Dependent Cytokine Signals. Journal of Immunology, 2006, 176, 2059-2063.	0.8	25
56	Cutting Edge: Itk Is Not Essential for CD28 Signaling in Naive T Cells. Journal of Immunology, 2005, 174, 4475-4479.	0.8	29
57	TEC FAMILY KINASES IN T LYMPHOCYTE DEVELOPMENT AND FUNCTION. Annual Review of Immunology, 2005, 23, 549-600.	21.8	296
58	Lymphocyte development. Current Opinion in Immunology, 2004, 16, 163-166.	5.5	2
59	Signaling through Itk Promotes T Helper 2 Differentiation via Negative Regulation of T-bet. Immunity, 2004, 21, 67-80.	14.3	151
60	The role of Tec family kinases in T cell development and function. Immunological Reviews, 2003, 191, 119-138.	6.0	79
61	Itk Phosphorylation Sites Are Required for Functional Activity in Primary T Cells. Journal of Biological Chemistry, 2003, 278, 37112-37121.	3.4	75
62	The Absence of Itk Inhibits Positive Selection Without Changing Lineage Commitment. Journal of Immunology, 2002, 168, 6142-6151.	0.8	53
63	Defective Fas Ligand Expression and Activation-Induced Cell Death in the Absence of IL-2-Inducible T Cell Kinase. Journal of Immunology, 2002, 168, 2163-2172.	0.8	71
64	Compartmentalized Eph receptor and ephrin expression in the thymus. Mechanisms of Development, 2002, 119, S225-S229.	1.7	18
65	New insights into the regulation and functions of Tec family tyrosine kinases in the immune system. Current Opinion in Immunology, 2002, 14, 331-340.	5.5	84
66	Molecular determinants of TCR expression and selection. Current Opinion in Immunology, 2001, 13, 232-241.	5.5	53
67	Analysis of the Individual Role of the TCRζ Chain in Transgenic Mice after Conditional Activation with Chemical Inducers of Dimerization. Cellular Immunology, 2001, 214, 123-138.	3.0	6
68	Cutting Edge: Two Distinct Mechanisms Lead to Impaired T Cell Homeostasis in Janus Kinase 3- and CTLA-4-Deficient Mice. Journal of Immunology, 2001, 166, 727-730.	0.8	20
69	Tec Kinase Signaling in T Cells Is Regulated by Phosphatidylinositol 3-Kinase and the Tec Pleckstrin Homology Domain. Journal of Immunology, 2001, 166, 387-395.	0.8	68
70	Biochemical Interactions Integrating Itk with the T Cell Receptor-initiated Signaling Cascade. Journal of Biological Chemistry, 2000, 275, 2219-2230.	3.4	244
71	A Profound Deficiency in Thymic Progenitor Cells in Mice Lacking Jak3. Journal of Immunology, 2000, 165, 3680-3688.	0.8	29
72	Dysregulated Myelopoiesis in Mice Lacking Jak3. Blood, 1999, 94, 932-939.	1.4	43

#	Article	IF	CITATIONS
73	The role of cytokine receptor signaling in lymphocyte development. Current Opinion in Immunology, 1999, 11, 157-166.	5.5	107
74	Interleukin 7 Receptor Control of  T Cell Receptor γ Gene Rearrangement: Role of Receptor-associated Chains and Locus Accessibility. Journal of Experimental Medicine, 1998, 188, 2233-2241.	8.5	123
75	T Cell Receptor–initiated Calcium Release Is Uncoupled from Capacitative Calcium Entry in Itk-deficient T Cells. Journal of Experimental Medicine, 1998, 187, 1721-1727.	8.5	313
76	T cell development and activation in Jak3-deficient mice. Journal of Leukocyte Biology, 1998, 63, 669-677.	3.3	44
77	The Signal Transduction of Motion and Antigen Recognition: Factors Affecting T Cell Function and Differentiation. , 1998, 20, 63-110.		1
78	Peripheral Expression of Jak3 Is Required to Maintain T Lymphocyte Function. Journal of Experimental Medicine, 1997, 185, 197-206.	8.5	83
79	Lck Phosphorylates the Activation Loop Tyrosine of the Itk Kinase Domain and Activates Itk Kinase Activity. Journal of Biological Chemistry, 1997, 272, 25401-25408.	3.4	155
80	Genomic Structure and Promoter Region of the Murine Janus-Family Tyrosine Kinase, Jak3. DNA and Cell Biology, 1997, 16, 85-94.	1.9	13
81	Regulatory intramolecular association in a tyrosine kinase of the Tec family. Nature, 1997, 385, 93-97.	27.8	261
82	The role of Jak3 in lymphoid development, activation, and signaling. Current Opinion in Immunology, 1997, 9, 541-547.	5.5	77
83	A TCR Binds to Antagonist Ligands with Lower Affinities and Faster Dissociation Rates Than to Agonists. Immunity, 1996, 5, 53-61.	14.3	395
84	Identification of Itk/Tsk Src Homology 3 Domain Ligands. Journal of Biological Chemistry, 1996, 271, 25646-25656.	3.4	174
85	Homodimerization of Interleukin-4 Receptor α Chain Can Induce Intracellular Signaling. Journal of Biological Chemistry, 1996, 271, 23634-23637.	3.4	67
86	Alterations in CD4 dependence accompany T cell development and differentiation. International Immunology, 1996, 8, 1077-1090.	4.0	7
87	Enhanced T Cell Maturation and Altered Lineage Commitment in T Cell Receptor/CD4-Transgenic Mice. Cellular Immunology, 1995, 162, 56-67.	3.0	8
88	CHROMOPHOREâ€ASSISTED LASER INACTIVATION OF SUBUNITS OF THE Tâ€CELL RECEPTOR IN LIVING CELLS IS SPATIALLY RESTRICTED. Photochemistry and Photobiology, 1995, 62, 923-929.	2.5	33
89	Quantitative Analysis of the Efficiency of Clonal Deletion in the Thymus. Autoimmunity, 1994, 4, 43-53.	0.6	16
90	Do the CD4 and CD8 lineages represent parallel pathways?. Seminars in Immunology, 1994, 6, 213-220.	5.6	2

#	Article	IF	CITATIONS
91	Phenotypic differences between αβ versus β T-cell receptor transgenic mice undergoing negative selection. Nature, 1989, 340, 559-562.	27.8	148
92	Antigen/MHC-specific T cells are preferentially exported from the thymus in the presence of their MHC ligand. Cell, 1989, 58, 1035-1046.	28.9	378