
Phillip Darcy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4935084/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Single-cell profiling of breast cancer T cells reveals a tissue-resident memory subset associated with improved prognosis. Nature Medicine, 2018, 24, 986-993.	30.7	689
2	Clinical relevance of host immunity in breast cancer: from TILs to the clinic. Nature Reviews Clinical Oncology, 2016, 13, 228-241.	27.6	679
3	CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity. Nature, 2017, 549, 101-105.	27.8	624
4	Anti-PD-1 Antibody Therapy Potently Enhances the Eradication of Established Tumors By Gene-Modified T Cells. Clinical Cancer Research, 2013, 19, 5636-5646.	7.0	598
5	Cancer immunotherapy: Opportunities and challenges in the rapidly evolving clinical landscape. European Journal of Cancer, 2017, 81, 116-129.	2.8	443
6	RAS/MAPK Activation Is Associated with Reduced Tumor-Infiltrating Lymphocytes in Triple-Negative Breast Cancer: Therapeutic Cooperation Between MEK and PD-1/PD-L1 Immune Checkpoint Inhibitors. Clinical Cancer Research, 2016, 22, 1499-1509.	7.0	428
7	Activating and inhibitory receptors of natural killer cells. Immunology and Cell Biology, 2011, 89, 216-224.	2.3	426
8	Gene-engineered T cells for cancer therapy. Nature Reviews Cancer, 2013, 13, 525-541.	28.4	425
9	CD73 promotes anthracycline resistance and poor prognosis in triple negative breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11091-11096.	7.1	406
10	Persistence and Efficacy of Second Generation CAR T Cell Against the LeY Antigen in Acute Myeloid Leukemia. Molecular Therapy, 2013, 21, 2122-2129.	8.2	361
11	Macrophage-Derived CXCL9 and CXCL10 Are Required for Antitumor Immune Responses Following Immune Checkpoint Blockade. Clinical Cancer Research, 2020, 26, 487-504.	7.0	355
12	CD73-Deficient Mice Have Increased Antitumor Immunity and Are Resistant to Experimental Metastasis. Cancer Research, 2011, 71, 2892-2900.	0.9	353
13	Induction of tumor-specific T cell memory by NK cell–mediated tumor rejection. Nature Immunology, 2002, 3, 83-90.	14.5	319
14	Trafficking of T Cells into Tumors. Cancer Research, 2014, 74, 7168-7174.	0.9	313
15	CD73: a potent suppressor of antitumor immune responses. Trends in Immunology, 2012, 33, 231-237.	6.8	310
16	Blockade of A _{2A} receptors potently suppresses the metastasis of CD73 ⁺ tumors. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14711-14716.	7.1	306
17	Adenosine Receptor 2A Blockade Increases the Efficacy of Anti–PD-1 through Enhanced Antitumor T-cell Responses. Cancer Immunology Research, 2015, 3, 506-517.	3.4	262
18	Targeting the adenosine 2A receptor enhances chimeric antigen receptor T cell efficacy. Journal of Clinical Investigation, 2017, 127, 929-941.	8.2	251

#	Article	IF	CITATIONS
19	BET-Bromodomain Inhibitors Engage the Host Immune System and Regulate Expression of the Immune Checkpoint Ligand PD-L1. Cell Reports, 2017, 18, 2162-2174.	6.4	244
20	Tumor immune evasion arises through loss of TNF sensitivity. Science Immunology, 2018, 3, .	11.9	244
21	A Network of PDZ-Containing Proteins Regulates T Cell Polarity and Morphology during Migration and Immunological Synapse Formation. Immunity, 2005, 22, 737-748.	14.3	237
22	Combined immune checkpoint blockade as a therapeutic strategy for <i>BRCA1</i> -mutated breast cancer. Science Translational Medicine, 2017, 9, .	12.4	227
23	Immunosuppressive activities of adenosine in cancer. Current Opinion in Pharmacology, 2016, 29, 7-16.	3.5	216
24	CD73-Deficient Mice Are Resistant to Carcinogenesis. Cancer Research, 2012, 72, 2190-2196.	0.9	178
25	Relevance of tumor-infiltrating lymphocytes in breast cancer. BMC Medicine, 2015, 13, 202.	5.5	177
26	CARs versus BiTEs: A Comparison between T Cell–Redirection Strategies for Cancer Treatment. Cancer Discovery, 2018, 8, 924-934.	9.4	173
27	Single-chain antigen recognition receptors that costimulate potent rejection of established experimental tumors. Blood, 2002, 100, 3155-3163.	1.4	165
28	Autoimmunity associated with immunotherapy of cancer. Blood, 2011, 118, 499-509.	1.4	163
29	Combined CDK4/6 and PI3Kα Inhibition Is Synergistic and Immunogenic in Triple-Negative Breast Cancer. Cancer Research, 2017, 77, 6340-6352.	0.9	163
30	Immune modulation of the tumor microenvironment for enhancing cancer immunotherapy. OncoImmunology, 2013, 2, e25961.	4.6	162
31	CAR Tâ€cell therapy of solid tumors. Immunology and Cell Biology, 2017, 95, 356-363.	2.3	155
32	Targeting Adenosine Receptor Signaling in Cancer Immunotherapy. International Journal of Molecular Sciences, 2018, 19, 3837.	4.1	139
33	Supernatural T cells: genetic modification of T cells for cancer therapy. Nature Reviews Immunology, 2005, 5, 928-940.	22.7	137
34	Adoptive transfer of T cells modified with a humanized chimeric receptor gene inhibits growth of Lewis-Y-expressing tumors in mice. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 19051-19056.	7.1	136
35	Redirecting Mouse CTL Against Colon Carcinoma: Superior Signaling Efficacy of Single-Chain Variable Domain Chimeras Containing TCR-ζ vs FcεRI-Î3. Journal of Immunology, 2001, 166, 182-187.	0.8	125
36	Tissue-Dependent Tumor Microenvironments and Their Impact on Immunotherapy Responses. Frontiers in Immunology, 2018, 9, 70.	4.8	120

#	Article	IF	CITATIONS
37	Adoptive cellular therapy with T cells expressing the dendritic cell growth factor Flt3L drives epitope spreading and antitumor immunity. Nature Immunology, 2020, 21, 914-926.	14.5	114
38	Tissues in Different Anatomical Sites Can Sculpt and Vary the Tumor Microenvironment to Affect Responses to Therapy. Molecular Therapy, 2014, 22, 18-27.	8.2	112
39	Blockade of PD-1 immunosuppression boosts CAR T-cell therapy. Oncolmmunology, 2013, 2, e26286.	4.6	108
40	CAR-T Cells Inflict Sequential Killing of Multiple Tumor Target Cells. Cancer Immunology Research, 2015, 3, 483-494.	3.4	103
41	Adoptive transfer of gene-engineered CD4+ helper T cells induces potent primary and secondary tumor rejection. Blood, 2005, 106, 2995-3003.	1.4	100
42	Cancer immunotherapy utilizing gene-modified T cells: From the bench to the clinic. Molecular Immunology, 2015, 67, 46-57.	2.2	100
43	Supercharging adoptive T cell therapy to overcome solid tumor–induced immunosuppression. Science Translational Medicine, 2019, 11, .	12.4	100
44	CRISPR/Cas9 mediated deletion of the adenosine A2A receptor enhances CAR T cell efficacy. Nature Communications, 2021, 12, 3236.	12.8	99
45	Dual-specific Chimeric Antigen Receptor T Cells and an Indirect Vaccine Eradicate a Variety of Large Solid Tumors in an Immunocompetent, Self-antigen Setting. Clinical Cancer Research, 2017, 23, 2478-2490.	7.0	95
46	Oncolytic Virus and Anti–4-1BB Combination Therapy Elicits Strong Antitumor Immunity against Established Cancer. Cancer Research, 2012, 72, 1651-1660.	0.9	94
47	Clinical application of genetically modified T cells in cancer therapy. Clinical and Translational Immunology, 2014, 3, e16.	3.8	94
48	Agonist immunotherapy restores T cell function following MEK inhibition improving efficacy in breast cancer. Nature Communications, 2017, 8, 606.	12.8	89
49	Cellular networks controlling T cell persistence in adoptive cell therapy. Nature Reviews Immunology, 2021, 21, 769-784.	22.7	83
50	Perforin activity and immune homeostasis: the common A91V polymorphism in perforin results in both presynaptic and postsynaptic defects in function. Blood, 2007, 110, 1184-1190.	1.4	82
51	Enhancing immunotherapy using chemotherapy and radiation to modify the tumor microenvironment. Oncolmmunology, 2013, 2, e25962.	4.6	80
52	Redirected Perforin-Dependent Lysis of Colon Carcinoma by Ex Vivo Genetically Engineered CTL. Journal of Immunology, 2000, 164, 3705-3712.	0.8	79
53	Enumeration, functional responses and cytotoxic capacity of MAIT cells in newly diagnosed and relapsed multiple myeloma. Scientific Reports, 2018, 8, 4159.	3.3	79
54	<scp>PTPN</scp> 2 phosphatase deletion in T cells promotes antiâ€ŧumour immunity and <scp>CAR</scp> T ell efficacy in solid tumours. EMBO Journal, 2020, 39, e103637.	7.8	79

#	Article	IF	CITATIONS
55	Gene-Engineered T Cells as a Superior Adjuvant Therapy for Metastatic Cancer. Journal of Immunology, 2004, 173, 2143-2150.	0.8	77
56	cAMP Response Element Binding Protein Is Required for Mouse Neural Progenitor Cell Survival and Expansion. Stem Cells, 2009, 27, 1347-1357.	3.2	76
57	Adoptive immunotherapy combined with intratumoral TLR agonist delivery eradicates established melanoma in mice. Cancer Immunology, Immunotherapy, 2011, 60, 671-683.	4.2	74
58	Foxp3 expression in T regulatory cells and other cell lineages. Cancer Immunology, Immunotherapy, 2014, 63, 869-876.	4.2	74
59	Antagonism of IAPs Enhances CAR T-cell Efficacy. Cancer Immunology Research, 2019, 7, 183-192.	3.4	68
60	The Functional Basis for Hemophagocytic Lymphohistiocytosis in a Patient with Co-inherited Missense Mutations in the Perforin (PFN1) Gene. Journal of Experimental Medicine, 2004, 200, 811-816.	8.5	67
61	Multiple Antitumor Mechanisms Downstream of Prophylactic Regulatory T-Cell Depletion. Cancer Research, 2010, 70, 2665-2674.	0.9	67
62	Dual PD-1 and CTLA-4 Checkpoint Blockade Promotes Antitumor Immune Responses through CD4+Foxp3â^' Cell–Mediated Modulation of CD103+ Dendritic Cells. Cancer Immunology Research, 2018, 6, 1069-1081.	3.4	67
63	Combined Natural Killer T-Cell–Based Immunotherapy Eradicates Established Tumors in Mice. Cancer Research, 2007, 67, 7495-7504.	0.9	64
64	Neoadjuvant Interferons: Critical for Effective PD-1–Based Immunotherapy in TNBC. Cancer Immunology Research, 2017, 5, 871-884.	3.4	63
65	A Multifunctional Role for Adjuvant Anti-4-1BB Therapy in Augmenting Antitumor Response by Chimeric Antigen Receptor T Cells. Cancer Research, 2017, 77, 1296-1309.	0.9	61
66	Sustained Antigen-Specific Antitumor Recall Response Mediated by Gene-Modified CD4+ T Helper-1 and CD8+ T Cells. Cancer Research, 2007, 67, 11428-11437.	0.9	59
67	Gene Modification Strategies to Induce Tumor Immunity. Immunity, 2005, 22, 403-414.	14.3	56
68	The Lewis-Y Carbohydrate Antigen is Expressed by Many Human Tumors and Can Serve as a Target for Genetically Redirected T cells Despite the Presence of Soluble Antigen in Serum. Journal of Immunotherapy, 2009, 32, 292-301.	2.4	56
69	A functional role for CD28 costimulation in tumor recognition by single-chain receptor-modified T cells. Cancer Gene Therapy, 2004, 11, 371-379.	4.6	55
70	Frizzled-7 receptor ectodomain expression in a colon cancer cell line induces morphological change and attenuates tumor growth. Differentiation, 2005, 73, 142-153.	1.9	52
71	Reprogramming the tumor microenvironment to enhance adoptive cellular therapy. Seminars in Immunology, 2016, 28, 64-72.	5.6	52
72	PTP1B Is an Intracellular Checkpoint that Limits T-cell and CAR T-cell Antitumor Immunity. Cancer Discovery, 2022, 12, 752-773.	9.4	52

#	Article	IF	CITATIONS
73	CD11c+ Dendritic Cells and B Cells Contribute to the Tumoricidal Activity of Anti-DR5 Antibody Therapy in Established Tumors. Journal of Immunology, 2010, 185, 532-541.	0.8	49
74	Tumor Ablation by Gene-Modified T Cells in the Absence of Autoimmunity. Cancer Research, 2010, 70, 9591-9598.	0.9	49
75	IL-15 Preconditioning Augments CAR T Cell Responses to Checkpoint Blockade for Improved Treatment of Solid Tumors. Molecular Therapy, 2020, 28, 2379-2393.	8.2	49
76	Manipulating immune cells for adoptive immunotherapy of cancer. Current Opinion in Immunology, 2014, 27, 46-52.	5.5	46
77	Immunotherapy of Cancer Using Systemically Delivered Gene-Modified Human T Lymphocytes. Human Gene Therapy, 2004, 15, 699-708.	2.7	45
78	High dose-rate brachytherapy of localized prostate cancer converts tumors from cold to hot. , 2020, 8, e000792.		45
79	MAIT cells regulate NK cell-mediated tumor immunity. Nature Communications, 2021, 12, 4746.	12.8	45
80	Enhancing the specificity of T-cell cultures for adoptive immunotherapy of cancer. Immunotherapy, 2011, 3, 33-48.	2.0	44
81	Engineering T Cell Function Using Chimeric Antigen Receptors Identified Using a DNA Library Approach. PLoS ONE, 2013, 8, e63037.	2.5	44
82	Biochemical and growth regulatory activities of the HIN-200 family member and putative tumor suppressor protein, AIM2. Biochemical and Biophysical Research Communications, 2005, 326, 417-424.	2.1	41
83	Loss of DNAM-1 ligand expression by acute myeloid leukemia cells renders them resistant to NK cell killing. Oncolmmunology, 2016, 5, e1196308.	4.6	41
84	Therapeutic DNA vaccination against colorectal cancer by targeting the MYB oncoprotein. Clinical and Translational Immunology, 2015, 4, e30.	3.8	39
85	Induction of T cell-mediated immunity using a c-Myb DNA vaccine in a mouse model of colon cancer. Cancer Immunology, Immunotherapy, 2008, 57, 1635-1645.	4.2	33
86	CD73: A potential biomarker for anti-PD-1 therapy. Oncolmmunology, 2015, 4, e1046675.	4.6	33
87	Identification and Characterization of a Novel Family of Mammalian Ependymin-Related Proteins (MERPs) in Hematopoietic, Nonhematopoietic, and Malignant Tissues. DNA and Cell Biology, 2001, 20, 625-635.	1.9	32
88	Stable IL-10: A New Therapeutic that Promotes Tumor Immunity. Cancer Cell, 2011, 20, 691-693.	16.8	31
89	Fas-ligand-mediated lysis of erbB-2-expressing tumour cells by redirected cytotoxic T lymphocytes. Cancer Immunology, Immunotherapy, 1999, 47, 278-286.	4.2	28
90	Three agonist antibodies in combination with high-dose IL-2 eradicate orthotopic kidney cancer in mice. Journal of Translational Medicine, 2010, 8, 42.	4.4	24

#	Article	IF	CITATIONS
91	Adoptive Transfer of Chimeric Fc Îμ RI Receptor Gene-Modified Human T Cells for Cancer Immunotherapy. Human Gene Therapy, 2006, 17, 1134-1143.	2.7	23
92	Characterizing the anti-tumor function of adoptively transferred NK cells in vivo. Cancer Immunology, Immunotherapy, 2010, 59, 1235-1246.	4.2	23
93	HDAC Inhibitor Panobinostat Engages Host Innate Immune Defenses to Promote the Tumoricidal Effects of Trastuzumab in HER2+ Tumors. Cancer Research, 2017, 77, 2594-2606.	0.9	23
94	Enhancing chimeric antigen receptor Tâ€cell immunotherapy against cancer using a nanoemulsionâ€based vaccine targeting crossâ€presenting dendritic cells. Clinical and Translational Immunology, 2020, 9, e1157.	3.8	23
95	Foxp3 Expression in Macrophages Associated with RENCA Tumors in Mice. PLoS ONE, 2014, 9, e108670.	2.5	23
96	Toll-Like Receptor Triggering and T-Cell Costimulation Induce Potent Antitumor Immunity in Mice. Clinical Cancer Research, 2009, 15, 7624-7633.	7.0	22
97	Colon Epithelial Cell Differentiation Is Inhibited by Constitutive c-Myb Expression or Mutant APC Plus Activated RAS. DNA and Cell Biology, 2005, 24, 21-29.	1.9	21
98	Alloreactive natural killer cells in hematopoietic stem cell transplantation. Leukemia Research, 2011, 35, 14-21.	0.8	21
99	Enhancing the efficacy of adoptive cellular therapy by targeting tumor-induced immunosuppression. Immunotherapy, 2015, 7, 499-512.	2.0	18
100	Environmental enrichment does not impact on tumor growth in mice. F1000Research, 2013, 2, 140.	1.6	18
101	Genetic modification of natural killer cells for adoptive cellular immunotherapy. Immunotherapy, 2009, 1, 623-630.	2.0	18
102	A _{2A} blockade enhances anti-metastatic immune responses. Oncolmmunology, 2013, 2, e26705.	4.6	17
103	A Histone Deacetylase Inhibitor, Panobinostat, Enhances Chimeric Antigen Receptor T-cell Antitumor Effect Against Pancreatic Cancer. Clinical Cancer Research, 2021, 27, 6222-6234.	7.0	17
104	Bi-Allelic Mutations in STXBP2 Reveal a Complementary Role for STXBP1 in Cytotoxic Lymphocyte Killing. Frontiers in Immunology, 2018, 9, 529.	4.8	16
105	Enterotoxins can support CAR T cells against solid tumors. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25229-25235.	7.1	16
106	Enhancing adoptive immunotherapy of cancer. Expert Opinion on Biological Therapy, 2010, 10, 531-545.	3.1	14
107	Combination anti-CD137 and anti-CD40 antibody therapy in murine myc-driven hematological cancers. Leukemia Research, 2014, 38, 948-954.	0.8	14
108	CAR-T cells are serial killers. Oncolmmunology, 2015, 4, e1053684.	4.6	14

#	Article	IF	CITATIONS
109	Embryonic Lethality in Homozygous Human Her-2 Transgenic Mice Due to Disruption of the Pds5b Gene. PLoS ONE, 2015, 10, e0136817.	2.5	14
110	A role for multiple chimeric antigen receptor-expressing leukocytes in antigen-specific responses to cancer. Oncotarget, 2016, 7, 34582-34598.	1.8	13
111	Redirected Cytotoxic Effector Function. Journal of Biological Chemistry, 1996, 271, 21214-21220.	3.4	12
112	T Cells Gene-engineered with DAP12 Mediate Effector Function in an NKG2D-dependent and Major Histocompatibility Complex-independent Manner. Journal of Biological Chemistry, 2005, 280, 38235-38241.	3.4	12
113	Expression of a Chimeric Antigen Receptor in Multiple Leukocyte Lineages in Transgenic Mice. PLoS ONE, 2015, 10, e0140543.	2.5	12
114	IPH4102, a monoclonal antibody directed against the immune receptor molecule KIR3DL2, for the treatment of cutaneous T-cell lymphoma. Expert Opinion on Investigational Drugs, 2018, 27, 691-697.	4.1	12
115	The Role of the immunological Synapse Formed by Cytotoxic Lymphocytes in Immunodeficiency and Anti-Tumor immunity. Critical Reviews in Immunology, 2015, 35, 325-347.	0.5	11
116	Immunomodulation by MYB is associated with tumor relapse in patients with early stage colorectal cancer. Oncolmmunology, 2016, 5, e1149667.	4.6	11
117	Toward precision immunotherapy using multiplex immunohistochemistry and in silico methods to define the tumor immune microenvironment. Cancer Immunology, Immunotherapy, 2021, 70, 1811-1820.	4.2	11
118	Routes of Delivery for CpG and Anti-CD137 for the Treatment of Orthotopic Kidney Tumors in Mice. PLoS ONE, 2014, 9, e95847.	2.5	10
119	Crossâ€ŧalk between tumors at anatomically distinct sites. FEBS Journal, 2021, 288, 81-90.	4.7	9
120	Chimeric Antigen Receptor T cell Therapy and the Immunosuppressive Tumor Microenvironment in Pediatric Sarcoma. Cancers, 2021, 13, 4704.	3.7	9
121	Virotherapy, gene transfer and immunostimulatory monoclonal antibodies. Oncolmmunology, 2012, 1, 1344-1354.	4.6	8
122	Differential potency of regulatory T cell-mediated immunosuppression in kidney tumors compared to subcutaneous tumors. Oncolmmunology, 2014, 3, e963395.	4.6	8
123	Myeloma natural killer cells are exhausted and have impaired regulation of activation. Haematologica, 2021, 106, 2522-2526.	3.5	8
124	Targeting Protein Tyrosine Phosphatase 22 Does Not Enhance the Efficacy of Chimeric Antigen Receptor T Cells in Solid Tumors. Molecular and Cellular Biology, 2022, 42, MCB0044921.	2.3	8
125	The doubleâ€edged sword of IFNâ€Î³â€dependent immuneâ€based therapies. Immunology and Cell Biology, 2016 94, 527-528.	'2. 3	7
126	XENOSPECIFIC CD8+ CYTOTOXIC T LYMPHOCYTE GENERATION. Transplantation, 1998, 65, 1278-1281.	1.0	7

#	Article	IF	CITATIONS
127	Cross-talk between tumors can affect responses to therapy. Oncolmmunology, 2015, 4, e975572.	4.6	7
128	Targeting Lewis Y-Positive Multiple Myeloma and Acute Myeloid Leukemia with Gene-Modified T Cells Demonstrating Memory Phenotype. Blood, 2008, 112, 3900-3900.	1.4	7
129	The potential impact of mouse model selection in preclinical evaluation of cancer immunotherapy. Oncolmmunology, 2014, 3, e946361.	4.6	6
130	Generating CAR T cells from tumor-infiltrating lymphocytes. , 2021, 9, 251513552110171.	2.3	6
131	An ultrastructural investigation of tumors undergoing regression mediated by immunotherapy. Oncotarget, 2017, 8, 115215-115229.	1.8	6
132	cDNA cloning of granzyme J. Immunogenetics, 1997, 45, 452-454.	2.4	5
133	Chimeric antigen receptor-redirected T cells display multifunctional capacity and enhanced tumor-specific cytokine secretion upon secondary ligation of chimeric receptor. Immunotherapy, 2013, 5, 577-590.	2.0	5
134	Pharmacological and genetic strategies for targeting adenosine to enhance adoptive T cell therapy of cancer. Current Opinion in Pharmacology, 2020, 53, 91-97.	3.5	5
135	Primary and metastatic breast tumors cross-talk to influence immunotherapy responses. Oncolmmunology, 2020, 9, 1802979.	4.6	5
136	Adoptive transfer of tumor-specific Th9 cells eradicates heterogeneous antigen-expressing tumor cells. Cancer Cell, 2021, 39, 1564-1566.	16.8	5
137	Adoptive immunotherapy: a new era for the treatment of cancer. Immunotherapy, 2015, 7, 469-471.	2.0	4
138	Augmenting Adoptive T-cell Immunotherapy by Targeting the PD-1/PD-L1 Axis. Cancer Research, 2021, 81, 5803-5805.	0.9	4
139	Releasing the Brake on Oncolytic Viral Therapy. Clinical Cancer Research, 2015, 21, 5417-5419.	7.0	3
140	A novel combination strategy for effectively targeting cancer stemâ€like cells. Immunology and Cell Biology, 2017, 95, 573-574.	2.3	3
141	p38 Kinase: A Key Target for Driving Potent T Cells for Adoptive Immunotherapy. Cancer Cell, 2020, 37, 756-758.	16.8	3
142	Tissue-specific tumour microenvironments are an emerging determinant of immunotherapy responses. Journal of Thoracic Disease, 2020, 12, 4504-4509.	1.4	3
143	A Novel Target Antigen for the Treatment of Acute Myeloid Leukemia by CAR T Cells. Molecular Therapy, 2017, 25, 1997-1998.	8.2	2
144	Genetic Modification of Mouse Effector and Helper T Lymphocytes Expressing a Chimeric Antigen Receptor. Methods in Molecular Biology, 2014, 1139, 177-187.	0.9	2

#	Article	IF	CITATIONS
145	Differential location of NKT and MAIT cells within lymphoid tissue. Scientific Reports, 2022, 12, 4034.	3.3	2
146	IL-21 priming enhances T-cell immunotherapy. Blood, 2008, 111, 5268-5269.	1.4	1
147	Chimeric antigen receptor T cell therapies for thoracic cancers— challenges and opportunities. Journal of Thoracic Disease, 2020, 12, 4510-4515.	1.4	1
148	Generation of Chimeric T-Cell Receptor Transgenes and Their Efficient Transfer in Primary Mouse T Lymphocytes. Methods in Molecular Biology, 2010, 651, 291-306.	0.9	1
149	Editorial overview: Tumour immunology: New frontiers in cancer immunotherapy. Current Opinion in Immunology, 2014, 27, vii-x.	5.5	0
150	Bcl-2 Over-Expression and Genetic Manipulation of T Cells Provides Tumor Specificity and Enhanced Resistance to Apoptosis In Vitro. The Open Gene Therapy Journal, 2009, 2, 29-37.	1.2	0
151	Anti-Tumor Activity of Genetically Redirected T Cells Against Orthotopic Kidney Cancer in Mice~!2010-01-06~!2010-03-24~!2010-05-13~!. The Open Gene Therapy Journal, 2010, 3, 1-7.	1.2	0
152	Autologous Peripheral Blood T Lymphocytes Transduced with An Anti LewisY Chimeric Receptor Gene Persist In Patients with Lewisy Positive Acute Myeloid Leukaemia and Show Changes In Functional Polarization After Adoptive Transfer,. Blood, 2011, 118, 4180-4180.	1.4	0
153	A New Safety Approach Allowing Reversible Control of CAR T Cell Responses. Molecular Therapy, 2020, 28, 1563-1566.	8.2	0