Peter C Psarras

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4934304/publications.pdf Version: 2024-02-01

		623734	713466
22	1,236	14	21
papers	citations	h-index	g-index
22	22	22	1534
all docs	docs citations	times ranked	citing authors

DETED C DEADDAS

#	Article	IF	CITATIONS
1	CO 2 capture from the industry sector. Progress in Energy and Combustion Science, 2017, 63, 146-172.	31.2	247
2	An Overview of the Status and Challenges of CO2 Storage in Minerals and Geological Formations. Frontiers in Climate, 2019, 1, .	2.8	200
3	Methane and CO ₂ Adsorption Capacities of Kerogen in the Eagle Ford Shale from Molecular Simulation. Accounts of Chemical Research, 2017, 50, 1818-1828.	15.6	130
4	Tunable Polyanilineâ€Based Porous Carbon with Ultrahigh Surface Area for CO ₂ Capture at Elevated Pressure. Advanced Energy Materials, 2016, 6, 1502491.	19.5	129
5	Carbon Capture and Utilization in the Industrial Sector. Environmental Science & Technology, 2017, 51, 11440-11449.	10.0	91
6	Assessment of reasonable opportunities for direct air capture. Environmental Research Letters, 2017, 12, 065001.	5.2	84
7	Cost Analysis of Direct Air Capture and Sequestration Coupled to Low-Carbon Thermal Energy in the United States. Environmental Science & Technology, 2020, 54, 7542-7551.	10.0	80
8	Cost Analysis of Carbon Capture and Sequestration of Process Emissions from the U.S. Industrial Sector. Environmental Science & 2007; Technology, 2020, 54, 7524-7532.	10.0	66
9	Cost Analysis of Carbon Capture and Sequestration from U.S. Natural Gas-Fired Power Plants. Environmental Science & Technology, 2020, 54, 6272-6280.	10.0	44
10	Enhancement of the Yield of Ammonia by Hydrogen‣ink Effect during Plasma Catalysis. ChemCatChem, 2020, 12, 1200-1211.	3.7	37
11	Natural Gas vs. Electricity for Solvent-Based Direct Air Capture. Frontiers in Climate, 2021, 2, .	2.8	35
12	Molecular simulations of nitrogen-doped hierarchical carbon adsorbents for post-combustion CO ₂ capture. Physical Chemistry Chemical Physics, 2016, 18, 28747-28758.	2.8	21
13	Effect of Water on the CO ₂ Adsorption Capacity of Amine-Functionalized Carbon Sorbents. Industrial & Engineering Chemistry Research, 2017, 56, 6317-6325.	3.7	18
14	Slicing the pie: how big could carbon dioxide removal be?. Wiley Interdisciplinary Reviews: Energy and Environment, 2017, 6, e253.	4.1	14
15	Modeling CO ₂ Transport and Sorption in Carbon Slit Pores. Journal of Physical Chemistry C, 2017, 121, 21018-21028.	3.1	10
16	Material Consequences of Hydrogen Dissolution in Palladium Alloys Observed from First Principles. Journal of Physical Chemistry C, 2019, 123, 22158-22171.	3.1	8
17	DFT/QTAIM analysis of the effect of late transition metal doping on methane selectivity in Fischer–Tr¶psch catalysis. Computational and Theoretical Chemistry, 2015, 1063, 1-9.	2.5	5
18	Theoretical Study of Nitrogen Absorption in Metals. Journal of Physical Chemistry C, 2017, 121, 17016-17028.	3.1	5

#	Article	IF	CITATIONS
19	Direct Air Capture: Assessing Impacts to Enable Responsible Scaling. , 0, , .		5
20	Effect of Ag and Pd promotion on CH ₄ selectivity in Fe(100) Fischer–Tröpsch catalysis. Physical Chemistry Chemical Physics, 2017, 19, 5495-5503.	2.8	4
21	Carbon footprinting of carbon capture and -utilization technologies: discussion of the analysis of Carbon XPRIZE competition team finalists. Clean Energy, 2021, 5, 587-599.	3.2	2
22	Dissociation, Dissolution, and Diffusion of Nitrogen on V _{<i>x</i>} Fe _{<i>y</i>} and V _{<i>x</i>} Cr _{<i>y</i>} Alloy Membranes Studied by First Principles. Journal of Physical Chemistry C, 2019, 123, 30416-30426.	3.1	1