Jaspreet Singh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4933722/publications.pdf

Version: 2024-02-01

80 papers 6,605

35 h-index 71 g-index

81 all docs

81 docs citations

81 times ranked 4994 citing authors

#	Article	IF	CITATIONS
1	3D Printing of Textured Soft Hybrid Meat Analogues. Foods, 2022, 11, 478.	4.3	31
2	Encapsulation of Lacticaseibacillus rhamnosus GG: Probiotic Survival, In Vitro Digestion and Viability in Apple Juice and Yogurt. Applied Sciences (Switzerland), 2022, 12, 2141.	2.5	10
3	Alternative proteins vs animal proteins: The influence of structure and processing on their gastro-small intestinal digestion. Trends in Food Science and Technology, 2022, 122, 275-286.	15.1	32
4	Influence of seed microstructure on the hydration kinetics and oral-gastro-small intestinal starch digestion in vitro of New Zealand pea varieties. Food Hydrocolloids, 2022, 129, 107631.	10.7	2
5	Rice Germination and Its Impact on Technological and Nutritional Properties: A Review. Rice Science, 2022, 29, 201-215.	3.9	26
6	Effects of hydrothermal treatment and low-temperature storage of whole wheat grains on in vitro starch hydrolysis and flour properties. Food Chemistry, 2022, 395, 133516.	8.2	5
7	Physico-Chemical Characteristics and In Vitro Gastro-Small Intestinal Digestion of New Zealand Ryegrass Proteins. Foods, 2021, 10, 331.	4.3	9
8	Meat analogs: Protein restructuring during thermomechanical processing. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 1221-1249.	11.7	66
9	Intact, Kibbled, and Cut Wheat Grains: Physicoâ€Chemical, Microstructural Characteristics and Gastroâ€6mall Intestinal Digestion In vitro. Starch/Staerke, 2021, 73, 2000267.	2.1	2
10	Fortifying compounds reduce starch hydrolysis of potato chips during gastroâ€small intestinal digestion in vitro. Starch/Staerke, 2021, 73, 2000196.	2.1	2
11	Cooking of short, medium and long-grain rice in limited and excess water: Effects on microstructural characteristics and gastro-small intestinal starch digestion in vitro. LWT - Food Science and Technology, 2021, 146, 111379.	5.2	14
12	Sous vide processed potatoes: Starch retrogradation in tuber and oral-gastro-small intestinal starch digestion in vitro. Food Hydrocolloids, 2021, 124, 107163.	10.7	3
13	Characterization of egg white gel microstructure and its relationship with pepsin diffusivity. Food Hydrocolloids, 2020, 98, 105258.	10.7	29
14	In-situ disintegration of egg white gels by pepsin and kinetics of nutrient release followed by time-lapse confocal microscopy. Food Hydrocolloids, 2020, 98, 105228.	10.7	16
15	Influence of time-temperature cycles on potato starch retrogradation in tuber and starch digestion in vitro. Food Hydrocolloids, 2020, 98, 105240.	10.7	20
16	Understanding the impact of Pulsed Electric Fields treatment on the thermal and pasting properties of raw and thermally processed oat flours. Food Research International, 2020, 129, 108839.	6.2	35
17	A novel apparatus for time-lapse optical microscopy of gelatinisation and digestion of starch inside plant cells. Food Hydrocolloids, 2020, 104, 105551.	10.7	11
18	Egg white gel structure determines biochemical digestion with consequences on softening and mechanical disintegration during in vitro gastric digestion. Food Research International, 2020, 138, 109782.	6.2	10

#	Article	lF	CITATIONS
19	Isolated potato parenchyma cells: Physico-chemical characteristics and gastro-small intestinal digestion in vitro. Food Hydrocolloids, 2020, 108, 105972.	10.7	10
20	Modifications in the physicochemical properties of flour "fractions―after Pulsed Electric Fields treatment of thermally processed oat. Innovative Food Science and Emerging Technologies, 2020, 64, 102406.	5 . 6	10
21	Role of biochemical and mechanical disintegration on \hat{l}^2 -carotene release from steamed and fried sweet potatoes during in vitro gastric digestion. Food Research International, 2020, 136, 109481.	6.2	9
22	Dual modification of potato starch: Effects of heat-moisture and high pressure treatments on starch structure and functionalities. Food Chemistry, 2020, 318, 126475.	8. 2	72
23	Food material properties as determining factors in nutrient release during human gastric digestion: a review. Critical Reviews in Food Science and Nutrition, 2020, 60, 3753-3769.	10.3	39
24	Mapping the Spatiotemporal Distribution of Acid and Moisture in Food Structures during Gastric Juice Diffusion Using Hyperspectral Imaging. Journal of Agricultural and Food Chemistry, 2019, 67, 9399-9410.	5.2	30
25	Modulating effect of cotyledon cell microstructure on in vitro digestion of starch in legumes. Food Hydrocolloids, 2019, 96, 112-122.	10.7	50
26	Microstructure of indica and japonica rice influences their starch digestibility: A study using a human digestion simulator. Food Hydrocolloids, 2019, 94, 191-198.	10.7	31
27	Effect of postâ€cooking storage on texture and in vitro starch digestion of Japonica rice. Journal of Food Process Engineering, 2019, 42, e12985.	2.9	16
28	Legume Microstructure., 2019, , 15-21.		2
29	High pressure processing and retrogradation of potato starch: Influence on functional properties and gastro-small intestinal digestion inÂvitro. Food Hydrocolloids, 2018, 75, 131-137.	10.7	60
30	Biomimetic plant foods: Structural design and functionality. Trends in Food Science and Technology, 2018, 82, 46-59.	15.1	36
31	Potato starch retrogradation in tuber: Structural changes and gastro-small intestinal digestion in vitro. Food Hydrocolloids, 2018, 84, 552-560.	10.7	28
32	Microstructural characteristics and gastro-small intestinal digestion in vitro of potato starch: Effects of refrigerated storage and reheating in microwave. Food Chemistry, 2017, 226, 171-178.	8.2	51
33	Nutritional evaluation and utilisation of composite whole flours for making functional cookies rich in \hat{I}^2 -glucan and isoflavones. British Food Journal, 2017, 119, 909-920.	2.9	6
34	Chemistry, Processing, and Nutritional Attributes of Potatoes—An Introduction. , 2016, , xxiii-xxvi.		1
35	Potato Starch and Its Modification. , 2016, , 195-247.		24
36	Novel Applications of Potatoes. , 2016, , 627-649.		3

#	Article	IF	CITATIONS
37	Microstructure, Starch Digestion, and Glycemic Index of Potatoes. , 2016, , 369-402.		4
38	Pilot scale production and inÂvitro gastro-small intestinal digestion of self-assembled recrystallised starch (SARS) structures. Journal of Food Engineering, 2016, 191, 95-104.	5.2	6
39	Textural Characteristics of Raw and Cooked Potatoes. , 2016, , 475-501.		5
40	Importance of chemistry, nutrition and technology in rice processing. Food Chemistry, 2016, 191, 1.	8.2	2
41	Impact of structural characteristics on starch digestibility of cooked rice. Food Chemistry, 2016, 191, 91-97.	8.2	103
42	Impact of the degree of cooking on starch digestibility of rice – An in vitro study. Food Chemistry, 2016, 191, 98-104.	8.2	87
43	Cotyledon Cell Structure and In Vitro Starch Digestion in Navy Beans. , 2014, , 223-242.		2
44	Food Microstructure and Starch Digestion. Advances in Food and Nutrition Research, 2013, 70, 137-179.	3.0	38
45	Physiochemical, Pasting, and Thermal Properties of Starch Isolated from Different Barley Cultivars. International Journal of Food Properties, 2013, 16, 1494-1506.	3.0	42
46	The role of cotyledon cell structure during in vitro digestion of starch in navy beans. Carbohydrate Polymers, 2012, 87, 1678-1688.	10.2	110
47	Parenchyma cell microstructure and textural characteristics of raw and cooked potatoes. Food Chemistry, 2012, 133, 1092-1100.	8.2	88
48	In vitro digestibility of starch in cooked potatoes as affected by guar gum: Microstructural and rheological characteristics. Food Chemistry, 2012, 133, 1206-1213.	8.2	86
49	Importance of chemistry, technology and nutrition in potato processing. Food Chemistry, 2012, 133, 1091.	8.2	13
50	Phenolic Content and Antioxidant Activity of Germinated and Cooked Pulses. International Journal of Food Properties, 2011, 14, 1366-1374.	3.0	46
51	Influence of Guar Gum on the In Vitro Starch Digestibility—Rheological and Microstructural Characteristics. Food Biophysics, 2010, 5, 149-160.	3.0	188
52	Formation of starch spherulites: Role of amylose content and thermal events. Food Chemistry, 2010, 121, 980-989.	8.2	37
53	Starch digestibility in food matrix: a review. Trends in Food Science and Technology, 2010, 21, 168-180.	15.1	727
54	Characterization of Gum Ghatti (<i>Anogeissus latifolia</i>): A Structural and Rheological Approach. Journal of Food Science, 2009, 74, E328-32.	3.1	50

#	Article	IF	CITATIONS
55	Development and characterization of extruded snacks from New Zealand Taewa (Maori potato) flours. Food Research International, 2009, 42, 666-673.	6.2	28
56	Potato Starch and its Modification. , 2009, , 273-318.		17
57	Starch–cassia gum interactions: A microstructure – Rheology study. Food Chemistry, 2008, 111, 1-10.	8.2	98
58	Low temperature post-harvest storage of New Zealand Taewa (Maori potato): Effects on starch physico-chemical and functional characteristics. Food Chemistry, 2008, 106, 583-596.	8.2	39
59	RHEOLOGICAL AND TEXTURAL CHARACTERISTICS OF RAW AND PARâ€COOKED TAEWA (MAORI POTATOES) OF NEW ZEALAND. Journal of Texture Studies, 2008, 39, 210-230.	2.5	21
60	Textural and pasting properties of potatoes (Solanum tuberosum L.) as affected by storage temperature. Journal of the Science of Food and Agriculture, 2007, 87, 520-526.	3.5	26
61	Morphological, thermal and rheological characterization of starch isolated from New Zealand Kamo Kamo (Cucurbita pepo) fruit – A novel source. Carbohydrate Polymers, 2007, 67, 233-244.	10.2	60
62	Physico-chemical, rheological and structural properties of fractionated potato starches. Journal of Food Engineering, 2007, 82, 383-394.	5.2	172
63	Factors influencing the physico-chemical, morphological, thermal and rheological properties of some chemically modified starches for food applications—A review. Food Hydrocolloids, 2007, 21, 1-22.	10.7	837
64	Starch – A Potential Biomaterial for Biomedical Applications. , 2007, , 83-98.		31
65	Physico-chemical and morphological characteristics of New Zealand Taewa (Maori potato) starches. Carbohydrate Polymers, 2006, 64, 569-581.	10.2	138
66	Effect of cross-linking on some properties of potato (Solanum tuberosum L.) starches. Journal of the Science of Food and Agriculture, 2006, 86, 1945-1954.	3.5	130
67	Effect of glycerol monostearate on the physico-chemical, thermal, rheological and noodle making properties of corn and potato starches. Food Hydrocolloids, 2005, 19, 839-849.	10.7	107
68	Effect of Process Variables and Sodium Alginate on Extrusion Behavior of Nixtamalized Corn Grit. International Journal of Food Properties, 2004, 7, 329-340.	3.0	12
69	Effect of Acetylation on Some Properties of Corn and Potato Starches. Starch/Staerke, 2004, 56, 586-601.	2.1	140
70	Relationships between various physicochemical, thermal and rheological properties of starches separated from different potato cultivars. Journal of the Science of Food and Agriculture, 2004, 84, 714-720.	3.5	32
71	Influence of acetic anhydride on physicochemical, morphological and thermal properties of corn and potato starch. Food Chemistry, 2004, 86, 601-608.	8.2	201
72	Studies on the morphological and rheological properties of granular cold water soluble corn and potato starches. Food Hydrocolloids, 2003, 17, 63-72.	10.7	160

#	Article	IF	CITATION
73	Morphological, thermal and rheological properties of starches from different botanical sources. Food Chemistry, 2003, 81, 219-231.	8.2	1,350
74	Physicochemical, rheological and cookie making properties of corn and potato flours. Food Chemistry, 2003, 83, 387-393.	8.2	103
75	CHANGES IN PHYSICO-CHEMICAL, THERMAL, COOKING AND TEXTURAL PROPERTIES OF RICE DURING AGING. Journal of Food Processing and Preservation, 2003, 27, 387-400.	2.0	48
76	Morphological, thermal, rheological and noodle-making properties of potato and corn starch. Journal of the Science of Food and Agriculture, 2002, 82, 1376-1383.	3.5	72
77	Effect of fatty acids on the rheological properties of corn and potato starch. Journal of Food Engineering, 2002, 52, 9-16.	5.2	86
78	EFFECT OF BAKING INGREDIENTS AND MIXING DURATION ON DOUGH DEVELOPMENT, GAS RELEASE AND BREAD MAKING PROPERTIES. Journal of Food Quality, 2002, 25, 305-315.	2.6	10
79	Studies on the morphological, thermal and rheological properties of starch separated from some Indian potato cultivars. Food Chemistry, 2001, 75, 67-77.	8.2	218
80	Effects of different ingredients and microwave power on popping characteristics of popcorn. Journal of Food Engineering, 1999, 42, 161-165.	5.2	34